
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

EMME: a formal tool for
ECMAScript Memory Model Evaluation

Cristian Mattarei?, Clark Barrett, Shu-yu Guo,
Bradley Nelson, and Ben Smith

Stanford University, Stanford, CA, USA
{mattarei,barrett}@cs.stanford.edu

Mozilla, Mountain View, CA, USA? ? ?

shu@rfrn.org

Google Inc., Mountain View, CA, USA
{bradnelson,binji}@google.com

Abstract. Nearly all web-based interfaces are written in JavaScript.
Given its prevalence, the support for high performance JavaScript code
is crucial. The ECMA Technical Committee 39 (TC39) has recently ex-
tended the ECMAScript language (i.e., JavaScript) to support shared
memory accesses between different threads. The extension is given in
terms of a natural language memory model specification. In this paper
we describe a formal approach for validating both the memory model and
its implementations in various JavaScript engines. We first introduce a
formal version of the memory model and report results on checking the
model for consistency and other properties. We then introduce our tool,
EMME, built on top of the Alloy analyzer, which leverages the model to
generate all possible valid executions of a given JavaScript program. Fi-
nally, we report results using EMME together with small test programs
to analyze industrial JavaScript engines. We show that EMME can find
bugs as well as missed opportunities for optimization.

1 Introduction

As web-based applications written in JavaScript continue to increase in com-
plexity, there is a corresponding need for these applications to interact effi-
ciently with modern hardware architectures. Over the last decade, processor
architectures have moved from single-core to multi-core, with the latter now
present in the vast majority of both desktop and mobile platforms. In 2012,
an extension to JavaScript was standardized[20] which supports the creation of
multi-threaded parallel Web Workers with message-passing. More recently, the
committee responsible for JavaScript standardization extended the language to
support shared memory access [10]. This extension integrates a new datatype
called SharedArrayBuffer which allows for concurrent memory accesses, thus
enabling more efficient multi-threaded program interaction.

? ? ? At the time this work was done
? This work was supported by a research grant from Google. We would also like to

thank JF Bastien from Apple for his support of this project.

2 Mattarei, Barrett, et al.

Given a multi-threaded program that uses shared memory, there can be sev-
eral possible valid executions of the program, given that reads and writes may
concurrently operate on the same shared memory and that every thread can
have a different view of it. However, not all behaviors are allowed, and the sep-
aration between valid and invalid behaviors is defined by a memory model. In
one common approach, memory models are specified using axioms, and the cor-
rectness of a program execution is determined by checking its consistency with
the axioms in the memory model. Given a set of memory operations (i.e., reads
and writes) over shared memory, the memory model defines which combinations
of written values each read event can observe. Because many different programs
can have the same behaviors, the memory model is also particularly important
for helping to determine the set of possible optimizations that a compiler can ap-
ply to a given program. As an example, a memory model could specify that the
only allowed multi-threaded executions are those that are equivalent to a sequen-
tial program composed of some interleaving of the events in each thread. This
model is the most stringent one and is called sequential consistency. With this
approach, all threads observe the same total order of events. However, this model
has significant performance limitations. In particular, it requires all cores/pro-
cessors to synchronize their local cache with each other in order to maintain
a coherent order of the memory events. In order to overcome such limitations,
weaker memory models have been introduced. The ECMAScript Memory Model
is a weak model.

Memory models are notoriously challenging to analyze with conventional test-
ing alone, due to their non-intuitive semantics and formal axiomatic definitions.
As a result, formal methods are frequently used in order to verify and validate
the correctness of memory models [4,5,7,18,6]. Some of these models apply to
instruction set architectures, whereas others apply to high-level programming
languages. In this work, we use formal methods to validate the ECMAScript
Memory Model and to analyze the correctness and performance of different
implementations of ECMAScript engines. JavaScript is usually regarded as a
high-level programming language, but its memory model is decidedly low-level
and more closely matches that of instruction set architectures than that of other
languages. The analyses that we provide are based on a formalization of the
memory model using the Alloy language [12], which is then combined with a
formal translation of the program to be analyzed in order to compute its set of
valid executions. This result can then be used to automatically generate litmus
tests that can be run on a concrete ECMAScript engine, allowing the developers
to evaluate its correctness. The concrete executions observed when running the
ECMAScript engine can either be a subset of, be equivalent to, or be a superset
of the valid executions. Standard litmus test analyses usually target the latter
case (incorrect engine behavior), providing little information in the other cases.
However, when the concrete engine’s observed executions are a relatively small
subset of the valid executions, (e.g., 1/5 the size), this can indicate a missed
opportunity for code optimization. As part of our work, we introduce a novel
approach in such cases that is able to identify specific predicates over the mem-

ECMAScript Memory Model Evaluator 3

ory model that are always consistent with the executions of the concrete engine,
thus providing guidance about where potential optimization opportunities might
exist.

The analyses proposed in this paper have been implemented in a tool called
ECMAScript Memory Model Evaluator (EMME), which has been used to val-
idate the memory model and to test the compliance of all major ECMAScript
engines, including Google’s V8 [1], Apple’s JSC [2], and Mozilla’s SpiderMon-
key [3].

The rest of the paper is organized as follows: Section 2 covers related work on
formal analysis of memory models; Section 3 describes the ECMAScript Mem-
ory Model and its formal representation; Section 4 characterizes the analyses
that are presented in this paper; Section 5 provides an overview of the Alloy
translation; Section 6 concentrates on the tool implementation and the design
choices that were made; Section 7 provides an evaluation of the performance of
the different techniques proposed in this paper; Section 8 describes the results of
the analyses performed on the ECMAScript Memory Model and several specific
engine implementations; and Section 9 provides concluding remarks.

2 Related Work

Most modern multiprocessor systems implement relaxed memory models, en-
abling them to deliver better performance when compared to more strict models.
Well known approaches such as Sequential Consistency (SC), Processor Con-
sistency (PC), Relaxed-Memory Order (RMO), Total Store Order (TSO), and
Partial Store Order (PSO) are mainly directed towards relaxing the constraints
on when read and write operations can be reordered.

The formal analysis of weak memory model hardware implementations has
typically been done using SAT-based techniques [5,9]. In [4], a formal analysis
based on Coq is used in order to evaluate SC, TSO, PSO, and RMO memory
models. The DIY tool developed in [4] generates assembly programs to run
against Power and x86 architectures. In contrast, in this work we concentrate on
the analysis of the ECMAScript memory model, assuming the processor behavior
is correct.

MemSAT [19] is a formal tool, based on Alloy [12], that allows for the verifi-
cation of axiomatic memory models. Given a program enriched with assertions,
MemSAT finds a trace execution (if it exists) where both assertions and the
axioms in the memory model are satisfied.

An analysis of the C++ memory model is presented in [6]. The formalization
is based on the LEM language [17], and the CPPMem software provides all
possible interpretations of a C/C++ program consistent with the memory model.
More recently, an approach based on Alloy and oriented towards synthesizing
litmus tests is proposed in [14].

In this paper, we build on ideas present in MemSAT and CPPMem to build a
tool for JavaScript. Our EMME tool can provide the set of valid executions for a
given input JavaScript program, and it can also generate litmus tests suitable for

4 Mattarei, Barrett, et al.

ev1W
1︷ ︸︸ ︷

init x = 0︸ ︷︷ ︸
Thread 1

|

ev2W
2︷ ︸︸ ︷

x-I8[0] = 1 ; print(

ev3R
2︷ ︸︸ ︷

x-I16[0])︸ ︷︷ ︸
Thread 2

|

ite(

ev4R
3︷ ︸︸ ︷

x-I8[0] == 1,

ev5W
3︷ ︸︸ ︷

x-I8[0] = 3 ,

ev6W
3︷ ︸︸ ︷

x-I8[1] = 3)︸ ︷︷ ︸
Thread 3

Fig. 1.1. Concurrent Program Example

0 1 32X=

x-I16[1]x-I8[0]

x-F32[0]

Fig. 1.2. Shared Memory Views

evaluating the correctness of JavaScript engine implementations. In contrast to
previous work, we also analyze situations where the litmus tests provide correct
results but expose a discrepancy between the number of observed behaviors in
the implementation and what is possible given the specification.

3 The ECMAScript Memory Model

The objective of the ECMAScript Memory Model is to precisely define when
an execution of a concurrent program that relies on shared memory is valid.
From the point of view of the Memory Model, a JavaScript program can be
abstracted as a set of threads, each of them composed of an ordered set of
shared memory events. Each memory event has a set of attributes that specify
its: operation (Read, Write, or ReadModifyWrite); ordering (SeqCst, Unordered,
or Init); tear type (whether a single read operation can read from two different
writes to the same location); (source or destination) memory block and address;
payload value; and modify operation (in the case of a ReadModifyWrite). The
shared memory is essentially an array of bytes, and a memory operation reads,
writes, or modifies it. In these operations, the bytes can be interpreted either
as signed/unsigned integer values or as floating point values. For instance, in
Figure 1.2, the notation x-I16[1] represents an access to the memory block x

starting at index 1, where the bytes are interpreted as 16-bit signed integers (i.e.,
I16), while x-F32[0] stands for a 32-bit floating point value starting at byte 0.

Formally, a program is defined as a set of events E and a partial order
between them, namely the Agent Order, that encodes the thread structure.
For the example in Figure 1.1, the set of events is defined as E = {ev1W 1,
ev2W

2, ev3R
2, ev4R

3, ev5W
3, ev6W

3}, with agent order AO = AO1 ∪ AO2 ∪
AO3, where AO1, AO2, and AO3 are the agent orders for each thread: AO1 =
{}, AO2 = {(ev2W 2, ev3R

2)}, and AO3 = {(ev4R3, ev5W
3), (ev4R

3, ev6W
3),

(ev5W
3, ev6W

3)}.
The execution semantics of a program is given by the Reads Bytes From

(RBF) relation, a trinary relation which relates two events and a single byte
index i, with the interpretation that the first event reads the byte at index i which
was written by the second event. Looking again at the example in Figure 1.1,
one of the possible valid assignments to the RBF relation is {(ev4R3, ev1W

1, 0),

ECMAScript Memory Model Evaluator 5

(ev3R
2, ev2W

2, 0), (ev3R
2, ev6W

3, 1)}, meaning that the Read event ev4R
3 reads

byte 0 from ev1W
1 (taking the else branch), and ev3R

2 reads byte 0 from ev2W
2

and 1 from ev6W
3.

The combination of a (finite) set of events E = {e1, . . . , en}, an agent order
AO ∈ E × E, and a Reads Bytes From RBF ∈ E × E × N relation identify a
Candidate Execution, and the purpose of the Memory Model is to partition this
set into Valid and Invalid executions. The separation is defined as a formula that
is satisfiable if and only if the Candidate Execution is Valid. Given a Candidate
Execution, the Memory Model constructs a set of supporting relations in order
to assess its validity:

– Reads From (RF): a binary relation that generalizes RBF by dropping the
byte location;

– Synchronizes With (SW): the synchronization relation between sequentially
consistent writes and reads;

– Happens Before (HB): a partial order relation between all events;
– Memory Order (MO): a total order relation between sequentially consistent

events.

Finally, a Candidate Execution is valid when the following predicates hold:

– Coherent Reads (CR): RF and HB relations are consistent;
– Tear Free Reads (TFR): for reads and writes for which the tear attribute is

false, a single read event cannot read from two different write events (both
of which are to the same memory address);

– Sequential Consistent Atomics (SCA): the MO relation is not empty.

3.1 Formal Representation

The formalization of the ECMAScript Memory Model is based on the formal
definition of a Memory Operation, shown in Definition 1.

Definition 1 (Memory Operation). A Memory Operation is a tuple 〈ID,
O, T , R, B, M , A〉 where:

– ID is a unique event identifier;
– O ∈ {Read (R),Write (W),ReadModifyWrite (M)} is the operation;
– T ∈ B is the Tear attribute;
– R ∈ {Init (I),SeqCst (SC),Unordered (U)} is the order attribute;
– B is the name of a Shared Data Block;
– M is a set of integers representing the memory addresses in B accessed by

the operation O, with the requirement that M = {i ∈ N | ByteIndex ≤ i <
ByteIndex+ ElementSize}, for some ByteIndex,ElementSize ∈ N

– A ∈ B is an Activation attribute.

Note that this definition differs slightly from the one used in [10] (though the
underlying semantics are the same). The differences make the model easier to
reason about formally and include:

6 Mattarei, Barrett, et al.

– In [10], the memory address range for an operation is represented by two
numbers, the ByteIndex and the ElementSize, whereas in Definition 1, we
represent the memory address range explicitly as a set of bytes (which must
contain some set of consecutive numbers, so the two representations are
equivalent). This representation allows for a simpler encoding of some oper-
ators like computing the intersection of two address ranges.

– Definition 1 omits the payload and modify operation attributes, as these
are only needed to compute the concrete value(s) of the data being read
or written. The formal model does not need to reason about such concrete
values in order to partition candidate executions into valid and invalid ones.
Furthermore, for any specific candidate execution of a JavaScript program,
these values can be computed from the original program using the RBF
relation.

– The activation attribute A is an extension used to encode whether an event
should be considered active based on the control flow path taken in an execu-
tion. In particular, we model if-then-else statements by enabling or disabling
the events in the then and else branches depending on the value of the con-
dition.

All relations in [10] (i.e., RBF, RF, SW, HB, and MO) are included in the
formal model, and their semantics are defined using set operations, while the
predicates (i.e., CR, TFR, and SCA) are expressed as formulas. The resulting
formulation of the Memory Model, combining all constraints and predicates, is
shown in Equation (1). Details of our implementation of this formulation are
given in Section 5.

MM(E,AO,RF,RBF, SW,HB,MO) := ϕRBF (RBF,E) ∧ ϕRF (RF,E,RBF)∧
ϕSW (SW,E,RF) ∧ ϕHB(HB,E,AO, SW) ∧ ϕMO(MO,E,HB, SW)∧
CR(E,HB,RBF) ∧ TFR(E,RF) ∧ SCA(MO) (1)

4 Formal Analyses

The design and development of a critical (software or hardware) system of-
ten follows a process in which high-level requirements (such as the standards
committee’s specification of the memory model) are used to guide an actual im-
plementation. This process can be integrated with different formal analyses to
ensure that the result is a faithful implementation with respect to the require-
ments. In this section, we describe the set of analyses that we used to validate the
requirements and implementations of the ECMAScript Memory Model. Results
of our analyses are reported in Section 8.

4.1 Formal Requirements Validation

The ECMAScript Memory Model defines a set of constraints which together
make up a formula (Equation (1)). The solutions of this formula are the valid

ECMAScript Memory Model Evaluator 7

executions. The Memory Model also lists a number of assertions, formulas that
are expected to be true in every valid execution (and thus must follow from the
constraints). Complete formal requirements validation would require checking
two things: (i) the constraints are consistent with each other, i.e. they contain
no contradictions; and (ii) each assertion is logically entailed by the set of con-
straints in the Memory Model. However, because we used Alloy (see Section 5)
we were unable to show full logical entailment, as Alloy can only reason about a
finite number of events. So we instead showed that for finite sets of events up to
a certain size, (i) and (ii) hold. In future work, we plan to explore using an SMT
solver to see if we can prove unbounded entailment in some cases. When (i) or
(ii) do not hold, there is a bug in either the requirements or the formal modeling
of the requirements. To help debug problems with (i), we used the unsat core
feature of Alloy, which identifies a subset of the constraints that are inconsistent.
To further aid debugging, we labeled each constraint ci with a Boolean activa-
tion variable avi (i.e. we replaced ci with (avi → ci) ∧ avi). This allowed us to
inspect the unsat core for activation variables and immediately discern which
constraints were active in producing the unsatisfiable result.

4.2 Implementation Testing

The Implementation testing phase analyzes whether a specific JavaScript engine
correctly implements the ECMAScript Memory Model. In particular, given a
program with shared memory operations, we generate: 1) the set of valid execu-
tions, 2) a litmus test, and 3) behavioral coverage constraints.

Valid Executions This analysis lists all of (and only) the behaviors that
the (provided) program can exhibit that are consistent with the Memory Model
specification. The encoding of the problem is based on the following definition:

VE(E, AO) := {(RBF, HB, MO, SW) |
MM(E, AO, RF, RBF, SW, HB, MO) is SAT}

where VE(E, AO) is the complete (and finite because the program itself is
finite) set of possible assignments to the RBF, HB, MO, and SW relations. Each
assignment corresponds to a valid execution.

Litmus Tests Litmus test generation uses the generated list of valid ex-
ecutions to construct a JavaScript program enriched with an assertion that is
violated if the output of the program does not match any of the valid executions.
A litmus test is executed multiple times (e.g., millions), in order to increase the
chance of exposing a problem if there is one.

The result of running a litmus test many times can (in general) have one
of three outcomes: the assertion is violated at least once, the assertion is not
violated and all possible executions are observed, and the assertion is not violated
and only some of the possible executions are observed. More specifically, given
a program P , the set of its valid executions VE (P), and the set of concrete
executions EN (P) (obtained by running the JavaScript program on engine E
some number of times N), the possible results can be respectively expressed as
EN (P) \VE (P) 6= ∅, EN (P) = VE (P), and EN (P) ⊂ VE (P).

8 Mattarei, Barrett, et al.

Behavioral Coverage Constraints Though they can expose bugs, the
litmus tests do not provide a guarantee of implementation correctness. In fact,
even when a “bug” is found, it could be that the specification is too tight (i.e., it
is incompatible with some intended behaviors) rather than that the implemen-
tation wrong. On the other hand, when EN (P) ⊂ VE (P), and especially if the
cardinality of EN (P) is significantly smaller than that of VE (P), it might be the
case that the implementation is too simple: it is not taking sufficient advantage
of the weak memory model and is therefore unnecessarily inefficient.

Whenever EN (P) ⊂ VE (P), this situation can be analyzed by the generation
of Behavioral Coverage Constraints. The goal of this analysis is to synthesize the
formulae ΣOBS and ΣUNOBS , for observed and unobserved outputs, that restrict
the behavior of the memory model in order to match EN (P) and VE (P)\EN (P).

Our approach to doing this relies on first choosing a set Π = {π1, . . . , πn} of
predicates over which the formula will be constructed. One choice for Π might
be all atomic predicates appearing in Equation (1). Now, let ∆(Π) be the set of
all cubes of size n over Π. Formally,

∆(Π) = {l1 ∧ · · · ∧ ln | ∀ 1 ≤ i ≤ n. li ∈ {πi,¬πi}}.
Further, define the observed and unobserved executions as:

EXOBS =
∨

〈RBF, HB, MO, SW〉∈EN (P)(RBF ∧HB ∧MO ∧ SW)

EXUNOBS =
∨

〈RBF, HB, MO, SW〉∈V E(P)\EN (P)(RBF ∧HB ∧MO ∧ SW)

We compute those cubes in ∆(Π) that are consistent with the observed and
unobserved executions as follows:

δOBS(Π) = {δ ∈ ∆(Π) | MM ∧ EXOBS ∧ δ is satisfiable}
δUNOBS(Π) = {δ ∈ ∆(Π) | MM ∧ EXUNOBS ∧ δ is satisfiable}

The cubes are then combined to generate the formulae for matched and un-
matched executions:

ΣOBS =
∨

δ∈δOBS

δ, ΣUNOBS =
∨

δ∈δUNOBS

δ.

For example, let (R2H := ∀e1,e2∈E : RF (e1, e2) → HB(e1, e2)) ∈ Π be a
predicate expressing that every tuple in Reads From is also in Happens Be-
fore. If the behavioral coverage constraints analysis generates ΣOBS = R2H
and ΣUNOBS = ¬R2H, it means that the JavaScript engine always aligns the
read from relation with the HB relation, thus identifying a possible path for
optimization in order to take advantage of the (weak) memory model.

5 Alloy Formalization

Alloy is a widely used modeling language that can be used to describe data struc-
tures. The Alloy language is based on relational algebra and has been successfully
used in many applications, including the analysis of memory models [14].

We used Alloy to formalize the memory model discussed in Section 3.1. We
followed the formalization given in Definition 1, using sets and relations to repre-

ECMAScript Memory Model Evaluator 9

6.3.1.14 happens-before

4. For each pair of events E and D in EventSet(execution):
a. If E is agent-order before D then E happens-before D.
b. If E synchronizes-with D then E happens-before D.
c. ...

Fig. 1.3. Excerpt of the Happens Before definition [10]

sent each concept.1. For instance, an operation type is defined as an (abstract)
set with three disjoint subsets (R for Read, W for Write, and M for ReadModi-
fyWrite), one for each possible operation. In contrast, blocks and bytes are
represented as sets. A memory operation is modeled as a relation which links all
of the attributes necessary to describe a memory event.

The formalization of a natural language specification usually requires mul-
tiple attempts and iterations before the intended semantics become clear. In
the case of the ECMAScript Memory Model, this process was crucial for dis-
ambiguating some of the stated constraints. An example is the Happens Before
relation. Figure 1.3 shows an excerpt of its definition, expressing how it is re-
lated to the Agent Order and Synchronizes With relations. One might expect
that the formal interpretation would be something like: ∀ (e1, e2). (AO(e1, e2)→
HB(e1, e2)) ∧ (SW(e1, e2)→ HB(e1, e2)) ∧ (. . .)

1 f a c t hb def { a l l ee , ed : mem events | Active2 [ee , ed] =>
(HB [ee , ed] <=> ((ee != ed) and (AO [ee , ed] or SW [ee , ed] or . . .)))}

Fig. 1.4. Excerpt of the Happens Before definition

However, further analysis and discussions with the people responsible for the
Memory Model revealed that the correct interpretation is: ∀ (e1, e2).HB(e1, e2)↔
(AO(e1, e2) ∨ SW(e1, e2) ∨ . . .). The Alloy formalization of the Happens Before
relation is shown in Figure 1.4. The Active2 predicate evaluates to true when
both events are active.

Once the Memory Model has been formalized, the next step is to combine
it with the encoding of the program under analysis. This requires modeling the
memory events present in each thread. In the Alloy model, each event in a
program extends the set of memory events, and its values are defined as a series
of facts. Figure 1.5 shows an example of the Alloy model for the event ev5W

3

from Figure 1.1. A notable aspect of this example is the fact that its activation is
dependent on the value of id1 cond which symbolically represents the condition
of the if-then-else statement.

1 one s i g ev5 W t3 extends mem events{}
2 f a c t ev5 W t3 def {(ev5 W t3 .O = W) and

(ev5 W t3 .T = NT) and
4 (ev5 W t3 .R = U) and

(ev5 W t3 .M = {byte 0 }) and
6 ((ev5 W t3 .A = ENABLED) <=> ((id1 cond . value = TRUE))) and

(ev5 W t3 .B = x)}
8 f a c t ev5 W t3 in mem events {ev5 W t3 in mem events}

Fig. 1.5. event ev5W
3 encoding (w.r.t. Figure 1.1)

1
The complete Alloy model is available at https://github.com/FMJS/EMME/blob/master/model/
memory_model.als

https://github.com/FMJS/EMME/blob/master/model/memory_model.als
https://github.com/FMJS/EMME/blob/master/model/memory_model.als

10 Mattarei, Barrett, et al.

6 Implementation

The techniques descriped in this paper have been implemented in a tool called
EMME: ECMAScript Memory Model Evaluator [15]. The tool is written in
Python, is open source, and its usage is regulated by a modified BSD license.
The input to EMME is a program with shared memory accesses. The tool in-
teracts with the Alloy Analyzer [13] to perform the formal analyses described in
Section 4, which include the enumeration of valid executions and the generation
of behavioral coverage constraints.

1 var x = new SharedArrayBuffer () ;
2

Thread t1 {
4 x−I8 [0] = 1 ;

p r in t (x−I16 [0]) ;
6 }

8 Thread t2 {
i f (x−I8 [0] == 1) {

10 x−I8 [0] = 3 ;
} e l s e {

12 x−I8 [1] = 3 ;
}

14 }

Fig. 1.6. EMME input for the program
from Figure 1.1.

Input Format and Encod-
ing The input format of EMME
uses a simplified JavaScript-like syn-
tax. It supports the definition of Read,
Write, and ReadModifyWrite events,
allows events to be atomic or not
atomic, and supports operations on
integer or floating point values. The
input format also supports if-then-
else and bounded for-loop statements,
as well as parametric values. An ex-
ample of an input program is shown in Figure 1.6. The program is encoded
in Alloy and combined with the memory model in order to provide the input
formula for the formal analyses.

Generation of All Valid Executions The generation of all valid execu-
tions is computed by using Alloy to solve the AllSAT problem. In this case, the
distinguishing models of the formula are the assignments to the RBF relation.
Thus, after each satisfiability check iteration of the Alloy Analyzer, an additional
constraint is added in order to block the current assignment to the RBF relation.
This procedure is performed until the model becomes unsatisfiable.

As described in Section 3.1, our formal model does not encode the concrete
values of each memory operation; thus, the extraction of a valid execution, given
a satisfiable assignment to the formula, requires an additional step. This step
is to to reconstruct the values of each read or modify operation based on the
program and the assignment to the RBF relation. For example, given the pro-
gram in Figure 1.1, and assuming that the RBF relation contains the tuples
(ev3R

2, ev2W
2, 0) and (ev3R

2, ev6W
3, 1), the reconstruction of the value read

by ev3R
2 depends on the fact that ev2W

2 writes 1 with an 8-bit integer encod-
ing at position 0, while ev6W

3 writes 3 at position 1. The composition of byte
0 and byte 1 from those two writes is the input for the decoding of a 16-bit
integer for the event ev3R

2, resulting in a read of the value 769. Clearly, each
event could also have a different size and format (i.e., integer, unsigned integer,
or float); thus, the reconstruction of the correct value must also take this into
account.

When interpreting a program containing if-then-else statements, the possible
outcomes must be filtered to exclude executions that break the semantics of if-

ECMAScript Memory Model Evaluator 11

ev3_R_t2
x-I16[0] = 3

ev5_W_t3
x-I8[0] := 3

(THEN)

RBF[0]

ev1_W_t1
x-init := 0

RBF[1]

ev4_R_t3
x-I8[0] = 1

HB

ev2_W_t2
x-I8[0] := 1

HB

HB

RBF[0]

HB

Memory Order
1: ev1_W_t1
2: ev2_W_t2
3: ev3_R_t2
4: ev4_R_t3
5: ev5_W_t3

(a) Interpretation 1 (THEN)

ev3_R_t2
x-I16[0] = 769

ev6_W_t3
x-I8[1] := 3

(ELSE)

RBF[1]

ev2_W_t2
x-I8[0] := 1

RBF[0]
HB

ev4_R_t3
x-I8[0] = 0

HB

ev1_W_t1
x-init := 0

RBF[0]HB HB

Memory Order
1: ev1_W_t1
2: ev2_W_t2
3: ev3_R_t2
4: ev4_R_t3
5: ev6_W_t3

(b) Interpretation 2 (ELSE)

Fig. 1.7. Memory Model interpretations of the program in Figure 1.6.

then-else. In particular, it might be the case that the Boolean condition in the
model does not match the concrete value, given the read values. For instance,
consider the example in Figure 1.6 in which the conditional is encoded as a
Boolean variable id1 cond representing the statement x-I8[0] == 1. However,
the tool may assign id1 cond to false even though the event x-I8[0] turns out
to read a value different from 1 based on the information in the RBF relation. In
this case, this execution is discarded since it is not possible given the semantics
of the if-then-else statement.

Graph Representation of the Results For each valid execution, EMME will pro-
duce a graphviz file that provides a graphical representation of the assignments
to main relations and read values. An example of this graphical representation
is shown in Figure 1.7. The default setup removes some redundant information
such as the explicit transitive closure of the HB relation, while RF and AO are
not represented, and the total order MO is reported in the top right corner. Black
arrows are used to represent the HB relation, while red and blue are respectively
used for RBF and SW. Figure 7(a) represents an execution where event ev4 R t3

reads value 1 from ev2 W t2, thus executing the THEN branch in the if-then-else
statement. In contrast, Figure 7(b) reports an execution where it reads 0, thus
taking the ELSE branch.

Litmus Test Generation The generation of all valid executions also constructs
a JavaScript litmus test that can be used to evaluate whether the engine respects
the semantics of the Memory Model. The structure of the litmus test mirrors that
of the input program, but the syntax follows the official TEST262 ECMAScript
conformance standard [11].

To check whether a test produced a valid result, the results of memory opera-
tions must be collected. The basic idea consists of printing the values of each read
and collecting them all at the thread level. The main thread is then responsible
for collecting all the results. The sorted report is then compared with the set of

12 Mattarei, Barrett, et al.

expected outputs using an assertion. Moreover, the test contains a part that is
parsed by the Litmus script, which is provided along with the EMME tool, and
provides a list of expected outputs. The Litmus script is used to facilitate the
execution of multiple runs of the same test, and it will provide a summary of
the results as well as a warning whenever one of the executions observed is a not
valid according to the standard.

Generation of the Behavioral Coverage Constraints As described in
Section 6, for each assignment to the RBF relation, it is possible to construct a
concrete value for each memory event. Thus, for each RBF assignment in a set of
valid executions for a given program, we can determine the output of the corre-
sponding litmus test. Thus, running the litmus test many times on a JavaScript
engine, it is possible to determine which assignments to the RBF relation have
been matched. We denote these MA rbf1, . . . ,MA rbfn. The unmatched assign-
ments to RBF can also be determined simply by removing the matched ones
from the set of all valid executions. We denote the unmatched ones UN rbf1,
. . . , UN rbfm.

As described in Section 4, the generation of separation constraints that dis-
tinguish between matched and unmatched executions first requires the definition
of a set of predicates Π. The extraction of the separation constraints is based
on an AllSAT call for matched and unmatched results. The former is shown in
(2), and consists of extracting all assignments to the predicates Π such that the
models of the RBF relation are consistent with MA rbfi.

ALLSATΠ [MM(E,AO,RBF, . . .) ∧ (E = BEE) ∧ (AO = BEAO)∧

(
∨

i=1,...,k

RBF = MA rbfi)] (2)

Similarly, the evaluation for the unmatched executions performs an AllSAT
analysis for the formula reported in (3). The results of these two calls to the
solver produce respectively the formula ΣOBS and ΣUNOBS as described in
Section 4.

ALLSATΠ [MM(E,AO,RBF, . . .) ∧ (E = BEE) ∧ (AO = BEAO)∧

(
∨

i=1,...,k

RBF = UN rbfi)] (3)

The results from the two AllSAT queries can then be manipulated using
a BDD [8] package that produces in most cases a smaller formula. After this
step, the tool provides a set of formal comparisons that can be done between
these two formulas such as implication, intersection, and disjunction, in order to
understand the relation between ΣOBS and ΣUNOBS .

7 Experimental Evaluations

In this section, we evaluate the performance of EMME over a set of programs,
each containing up to 8 memory events. The analyses can be reproduced using
the package available at [16].

ECMAScript Memory Model Evaluator 13

Programs Under Analysis In this work, we rely on programs from previous
work [6] as well as handcrafted and automatically generated programs. The
handcrafted examples are part of the EMME [15] distribution, and they cover
a variety of different configurations with 1 to 8 memory events, if-statements,
for-loops, and parametric definitions.

The programs from previous work as well as the handcrafted examples cover
an interesting set of examples, but provide no particular guarantees on the space
of programs that are covered. To overcome this limitation, we implemented a
tool that enumerates all possible programs of a fixed size, thus giving us the
possibility of generating programs to entirely cover the space of configurations,
given a fixed set of events.

The sizes of the programs considered in this evaluation allow us to cover a
representative variety of possible event interactions, while preserving a reason-
able level of readability of the results. In fact, a program with 8 memory events
can have hundreds of valid executions that often require extensive manual effort
to understand.

0,1

1

10

100

1000

0 200 400 600 800 1000 1200

Ti
m
e	
in
	se

co
nd

s

Program	number

Fig. 1.8. Generation of All Valid Exe-
cutions (form 3 to 8 memory events).

All Valid Executions As described
in Section 6, the generation of all valid
executions is based on a single AllSAT
procedure. Figure 1.8 shows a scala-
bility evaluation when generating all
valid executions of 1200 program in-
stances, each with from 3 to 8 memory
events (200 programs for each config-
uration). The x-axis refers to the pro-
gram number, ordered first by num-
ber of memory events, and then by
increasing execution time, while the
y-axis reports the execution time (in
seconds on an Intel i7-6700 @ 3.4GHz)
on a logarithmic scale. The results show that the proposed approach is able to
analyze programs with 7 memory events in fewer than 10 seconds, providing
reasonable responsiveness to deal with small, but informative, programs.

Behavioral Coverage Constraints For the coverage constraints analysis, we
first extracted a subset of the 1200 tests, considering only the ones that could
produce at least 5 different outputs. There were 288 such tests. For each test,
we ran the JavaScript engine 500 times, and performed an analysis using 11
predicates, each of which corresponds to a sub-part of the Memory Model, as well
as some additional formulae. During this evaluation, the average computation
time required to perform the behavioral coverage constraints analysis was 3.25
seconds, with a variance of 0.37 seconds.

14 Mattarei, Barrett, et al.

8 Results of the Formal Analyses

In this Section we provide an overview of the results of the formal analyses for
the ECMAScript Memory Model.

Circular relations definition In the original Memory Model, a subset of
the relations were specified using circular definitions. More specifically, using the
notation a→ b as “the definition of a depends on b”, the loop was Synchronizes
With → Reads From → Reads Bytes From → Happens Before → Synchronizes
With. Cyclic definitions can result in vacuous constraints, and in the case of
binary relations, this manifests as solutions with unconstrained tuples that be-
long to all relations involved in the cycle. In order to solve this problem, the
definition of Reads Bytes From was changed so that it no longer depends on
Happens Before. In addition, the memory model was extended with a property
called Valid Coherent Reads that constrains the possible tuples belonging to the
Reads Bytes From relation.

Misalignment of the ComposeWriteEventBytes The memory model
defines a Reads Bytes From relation, and checks whether the tuples belonging
to it are valid by relying on a function called ComposeWriteEventBytes. Given
a list of writes, the ComposeWriteEventBytes function creates a vector of values
associated with a read event; however, the index for each write event was not
correct, resulting in a misalignment w.r.t. the Reads Bytes From relation. An
additional offset was added in order to fix the problem.

Distinct events quantification Another problem encountered while an-
alyzing the ECMAScript memory model was caused by a series of inconsistent
constraints. One example of inconsistency was in the definition of the Happens
Before relation which prescribes that for any two events ev1 and ev2 with over-
lapping ranges, whenever ev1 is of type Init, ev2 should be of a different type
(i.e., not Init). However, there was no constraint stating that ev1 and ev2 have
to be distinct, and certainly, whenever ev1 and ev2 are not distinct then this
expression is unsatisfiable.

A similar inconsistency was found in the definition of the Memory Order rela-
tion. In this case, if the SW relation contains the pair (ev1, ev2), and (ev1, ev2) ∈
HB, then the MO should contain (ev1, ev2). However, this is inconsistent with
another constraint requiring that no event ev3 should exist operating on the
same memory addresses as ev2 such that both (ev1, ev3) ∈ MO and (ev3, ev2) ∈
MO. This constraint is false when ev1 = ev2 = ev3. Both the Happens Before
and the Memory Order relations initially permitted any pairs of elements to be
related (including two equal elements). The solution was to only allow pairs of
distinct events in these relations.

The definition of the Reads Bytes From relation stated that each read or
modify event ev1R is associated with a list of pairs of byte indices and write or
modify events. The definition did not specifically preclude allowing modify events
to read from themselves. This does not cause any particular issues at the formal
model level, but it is not clear what the implication at the JavaScript engine

ECMAScript Memory Model Evaluator 15

implementation level would be. In order to resolve this issue, the definition of
the Reads Bytes From relation was modified to allow only events that are distinct
to be related by Reads Bytes From.

Outputs coverage on ECMAScript engines As described in Section 4,
the litmus test analysis can result in three possible outcomes, e.g., Ex(P) \
VE (P) 6= ∅ when the engine violates the specification, Ex(P) = VE (P) when
the engine matches the specification, and Ex(P) ⊂ VE (P) when the engine is
more restrictive than the specification. Typically, such an analysis is designed to
find bugs in the software implementation of the memory model [4,6], focusing
on the first case (Ex(P) \ VE (P) 6= ∅). However, in this project, the last case
was most prevalent, where Ex(P) is significantly smaller than VE (P).

For instance, when we ran the 288 examples with at least 5 possible outputs
(from Section 7) 1000 times for each combination of program and JavaScript
engine, the overall output coverage reached 75%, but for 1/6 of the examples,
the coverage did not exceed 50%, and some were even below 15%2.

This situation (frequently having far fewer observed behaviors than allowed
behaviors) guided our development of alternative analyses, such as the genera-
tion of the behavioral coverage constraints, to help developers understand the
relationship between an engine’s implementation and the memory model specifi-
cation. Future improvements of JavaScript engines will likely be less conservative,
meaning that more behaviors will be covered. The tests produced in this project
will be essential to ensure that no bugs are introduced. Currently, we are in the
process of adapting the litmus tests so that they can be included as part of the
official TEST262 test suite for the ECMAScript Memory Model.

9 Conclusion

Extending JavaScript, the language used by nearly all web-based interfaces, to
support shared memory operations warrants the use of extensive verification
techniques. In this work, we have presented a tool that has been developed
in order to support the design and development of the ECMAScript Memory
Model. The formal analysis of the original specification allowed us to identify
a number of potential issues and inconsistencies. The evaluation of the valid
executions and litmus tests coverage analysis identified a conservative level of
optimization in current engine implementations. This situation motivated us to
develop a specific technique for understanding differences between the Memory
Model specification and JavaScript engine implementations.

Future extensions to this work will consider providing additional techniques
to help developers improve code optimizations in JavaScript engines. Techniques
such as the synthesis of equivalent programs, and automated value instantiation
given a parametric program will provide additional analytical capabilities able to
identify possible directions for code optimization. Moreover, we will also consider
integration with other constraint solving engines in order to deal with more
complex programs.

2
On an x86 machine, and with the latest version of the engines available on October 1st, 2017.

16 Mattarei, Barrett, et al.

References

1. Chrome V8: Google’s high performance, open source, JavaScript engine. https:

//developers.google.com/v8/, 2017.
2. JavaScriptCore: is the built-in JavaScript engine for WebKit. https://developer.

apple.com/reference/javascriptcore, 2017.
3. SpiderMonkey: Mozilla’s JavaScript engine. https://developer.mozilla.org/

en-US/docs/Mozilla/Projects/SpiderMonkey, 2017.
4. J. Alglave. A Shared Memory Poetics. PhD thesis, lUniversitè Paris 7 Denis

Diderot, Paris, France, 11 2010.
5. M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification

problem for weak memory models. ACM Sigplan Notices, 45(1):7–18, 2010.
6. M. Batty. The C11 and C++11 Concurrency Model. PhD thesis, University of

Kent, Canterbury, UK, 1 2015.
7. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing c++

concurrency. In ACM SIGPLAN Notices, volume 46, pages 55–66. ACM, 2011.
8. R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-decision Dia-

grams. ACM Comput. Surv., 24(3):293–318, Sept. 1992.
9. S. Burckhardt, R. Alur, and M. M. Martin. Checkfence: checking consistency of

concurrent data types on relaxed memory models. In ACM SIGPLAN Notices,
volume 42, pages 12–21. ACM, 2007.

10. ECMA TC39 Committee. ECMAScript Shared Memory and Atomics. https:

//tc39.github.io/ecmascript_sharedmem/shmem.html, 2016.
11. ECMA TC39 Committee. Official ECMAScript Conformance Test Suite. https:

//github.com/tc39/test262, 2017.
12. D. Jackson. Alloy: A lightweight object modelling notation. ACM Trans. Softw.

Eng. Methodol., 11(2):256–290, Apr. 2002.
13. D. Jackson. alloy: a language & tool for realational models. http://alloy.mit.

edu/alloy/, 2017.
14. D. Lustig, A. Wright, A. Papakonstantinou, and O. Giroux. Automated synthesis

of comprehensive memory model litmus test suites. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’17, pages 661–675, New York, NY, USA,
2017. ACM.

15. C. Mattarei. EMME: ECMAScript Memory Model Evaluator. https://github.

com/fmjs/EMME, 2017.
16. C. Mattarei, C. Barrett, S.-y. Guo, B. Nelson, and B. Smith. Artifact evaluation

for the ECMAScript Memory Model Evaluator (EMME) tool. https://doi.org/

10.6084/m9.figshare.5923312, 2018.
17. S. Owens, P. Böhm, F. Z. Nardelli, and P. Sewell. Lem: A lightweight tool for

heavyweight semantics. In International Conference on Interactive Theorem Prov-
ing, pages 363–369. Springer, 2011.

18. N. ten Dijke. Comparison of verification methods for weak memory models. 2014.
19. E. Torlak, M. Vaziri, and J. Dolby. MemSAT: checking axiomatic specifications of

memory models. In ACM Sigplan Notices, volume 45, pages 341–350. ACM, 2010.
20. W3C Web Application Working Group. Web workers specification. https://www.

w3.org/TR/2012/CR-workers-20120501, 2012.

https://developers.google.com/v8/
https://developers.google.com/v8/
https://developer.apple.com/reference/javascriptcore
https://developer.apple.com/reference/javascriptcore
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://tc39.github.io/ecmascript_sharedmem/shmem.html
https://tc39.github.io/ecmascript_sharedmem/shmem.html
https://github.com/tc39/test262
https://github.com/tc39/test262
http://alloy.mit.edu/alloy/
http://alloy.mit.edu/alloy/
https://github.com/fmjs/EMME
https://github.com/fmjs/EMME
https://doi.org/10.6084/m9.figshare.5923312
https://doi.org/10.6084/m9.figshare.5923312
https://www.w3.org/TR/2012/CR-workers-20120501
https://www.w3.org/TR/2012/CR-workers-20120501

	Introduction
	Related Work
	The ECMAScript Memory Model
	Formal Representation

	Formal Analyses
	Formal Requirements Validation
	Implementation Testing
	Valid Executions
	Litmus Tests
	Behavioral Coverage Constraints

	Alloy Formalization
	Implementation
	Input Format and Encoding
	Generation of All Valid Executions
	Generation of the Behavioral Coverage Constraints

	Experimental Evaluations
	Results of the Formal Analyses
	Circular relations definition
	Misalignment of the ComposeWriteEventBytes
	Distinct events quantification
	Outputs coverage on ECMAScript engines

	Conclusion

