
Safety Assessment of AltaRica models via
Symbolic Model Checking

Marco Bozzanoa, Alessandro Cimattia, Oleg Lisagorb, Cristian Mattareia,
Sergio Movera, Marco Roveria, Stefano Tonettaa

aFondazione Bruno Kessler, Trento, Italy
bThe University of York, York, United Kingdom

Abstract

AltaRica is a language used to describe safety critical systems that has become a
de-facto European industrial standard for Model-Based Safety Assessment
(MBSA). However, even the most mature tool for the support for MBSA of Al-
taRica models, i.e. Dassault’s OCAS, has several limitations. The most important
ones are its inability to perform many analyses exhaustively, severe scalability
issues, and the lack of model checking techniques for temporal properties.

In this paper we present a novel approach for the analysis of AltaRica models,
based on a translation into an extended version of the model checker NuSMV.
The translation relies on a novel formal characterization of the Dataflow dialect of
AltaRica used in OCAS. The translation is formally defined, and its correctness
is proved. Based on this formal characterization, a toolset has been developed
and integrated within OCAS, thus enabling functional verification and safety as-
sessment with the state of the art techniques of NuSMV. The whole approach is
validated by an experimental evaluation on a set of industrial case studies, which
demonstrates the advantages of the proposed technique over the currently avail-
able tools.

Keywords: Model Checking, Safety Assessment, Fault Tree Analysis, Altarica

1. Introduction

Safety-critical systems are traditionally subject to a high degree of authority,
which mandates the application of suitable techniques for safety assessment (e.g.,
Fault Tree Analysis (FTA) [1, 2] or Failure Modes and Effects Analysis (FMEA)),
to analyze the behavior of the system in presence of faults.

Preprint submitted to Science of Computer Programming June 9, 2014

The dramatic increase in complexity of computer-based systems has moti-
vated, in recent years, a growing industrial interest in model-based safety assess-
ment (MBSA) methods. In contrast to traditional safety assessment, where each
safety-significant event (e.g., a system hazard, or component failure mode) is sub-
ject to separate analysis, MBSA methods are based on a single “safety model” of
a system, typically written in a suitable modeling language. Analyses with respect
to particular safety-significant events are conducted on the basis of such “safety
models” with a high degree of automation [3]. Many of the MBSA techniques
allow the verification of the functional correctness of the system (e.g., with re-
spect to functional safety requirements) as well as to assess system behavior in
the presence of faults [4, 5, 6]. In particular, formal verification tools based on
model checking have been extended to automate the generation of artifacts such
as Fault Trees (FTs) and FMEA tables [7, 8, 9].

AltaRica [10, 11] is a modelling language for MBSA, specifically developed
by a consortium of French industrial and academic partners for safety assess-
ment of industrial systems (see, e.g., [12, 13]). AltaRica has been used in sev-
eral projects by companies and consortia like Airbus, Alenia Aeronautica, Alstom
Rail, Dassault Aviation, EADS, France Telecom, Schneider Electric, Thales, Total
and Turbomeca, and has become a de-facto European industrial standard over the
course of the last decade or so. In fact, to authors’ knowledge, it is the only
MBSA language that has been successfully used for certification of industrial
safety-critical systems.

AltaRica is the modeling language used in Cecilia OCAS [13] (OCAS for
short), a model-based safety assessment platform developed by Dassault Avia-
tion. OCAS provides a graphical modelling environment, which allows us to
describe dynamic transition systems and it is well understood and accepted by
the engineers. OCAS is also equipped with different model analysis tools, in-
cluding a trace simulator (able to generate possible evolutions of the system), and
a sequence generator that is used to generate minimal cut sets [1, 2]. Interest-
ingly, OCAS is the only MBSA tool that was accepted by regulatory agencies as
a basis for certification of safety-critical systems. The tool was qualified to the
requirements of DO-178b [14], the industrial standard for software development
and assurance in the aviation sector. OCAS demonstrated its usefulness for the
architectural safety assessment of avionics systems, for example the OCAS anal-
ysis was the basis for the certification of the Flight Control System of Falcon 7x
aircraft.

However, the size reached by industrial systems constantly increases the labor
and costs in certification, and calls for increasingly automated and highly scalable

2

techniques and tools. In particular, the analysis tools in OCAS are subject to some
important limitations. First, some analyses are not able to perform an exhaustive
space examination, and are not complete. For example, reachability analysis is
bounded in depth; similarly, the OCAS sequence generator cannot explore non-
deterministic instantaneous transitions, potentially leading to incomplete analysis
results. Second, the OCAS sequence generator demonstrates limited scalability in
presence of industrial-sized systems, hindering the generation of important arti-
facts such as Fault Trees. Finally, OCAS does not support the representation and
analysis of temporal properties of AltaRica models, which makes model valida-
tion an extremely hard task.

In this paper we propose an approach that overcomes these limitations. The
idea is to translate AltaRica models into HyDI [15], one of the input languages
of NuSMV [16]. NuSMV is a state-of-the-art symbolic model checker, provid-
ing cutting-edge model checking technologies such as Binary Decision Diagrams
(BDD)-based [17] and SAT-based Bounded Model Checking (BMC) [18] tech-
niques. NuSMV supports both temporal model checking (CTL and LTL tempo-
ral logics), and safety assessment, e.g., Fault Tree Analysis (FTA) and FMEA,
through its add-on NuSMV-SA. NuSMV has been used in several industrial con-
texts, for instance for verification and validation of aerospace systems [9], and is
one of the most mature formal verification tools available to date. The translation
enables the use of the NuSMV functionalities, thus extending the existing analysis
techniques for AltaRica models.

Although in principle simple, realizing this flow posed a key challenge: the
formal characterization of the AltaRica language defined in [11] lacks a clear link
between the concrete syntax of the language and the abstract syntax (and thus its
semantics). Our first contribution is to provide a formal characterization of the
AltaRica language in the Dataflow formulation used in OCAS. The formalization
includes a rich abstract syntax, and the corresponding semantics, taking into ac-
count the recursive definition of nodes, input/output flows, and their connections
through assertions.

Second, we formally define a translation from AltaRica to HyDI, and prove its
correctness, showing a one-to-one correspondence in the behaviors of the models.
This result is the foundation for the correctness of the overall approach, and it
allows us to map artifacts from HyDI (e.g., counterexample traces produced by
NuSMV) back to AltaRica, and constitutes a key enabler for a future qualification
of the certification process.

Based on this result, we developed the NuSMV/OCAS plugin, which extends
the OCAS environment with the following functionalities: invariant checking,

3

temporal model checking, and fault tree generation. The NuSMV/OCAS plugin
was developed within MISSA (More Integrated Systems Safety Assessment), a
European Community-sponsored project involving various research centers and
industries from the avionics sector [19]. The industrial partners conveyed impor-
tant insights on the functionalities of interest, and provided some case studies.

The NuSMV/OCAS plugin was validated with respect to the behavior shown
by the OCAS simulator. We evaluated both behaviors on a set of industrial-size
case studies developed in MISSA, and compared it, when possible, with the ex-
isting analysis tools of OCAS. The results of the evaluation clearly show that this
activity resulted in a significant improvement of OCAS, both in terms of available
functionalities, and in terms of performance improvement.

The paper is organized as follows. First, in Section 2 we discuss our approach
with the existing related works, then in Section 3 we give an overview of the Al-
taRica Dataflow formulation while in Section 4 we introduce the HyDI language.
We present an informal description of our translation in Section 5. In Section 6
we present the newly defined abstract syntax and semantics of AltaRica and its
translation to HyDI. In Section 7 we present the integration into OCAS. Finally,
in Section 8 we discuss the experimental evaluation and in Section 9 we conclude
and discuss future work.

2. Related Work

Since early 1990s a large number of MBSA languages and notations became
available. The most prominent languages include Failure Propagation and Trans-
formation Notation and Calculus (FPTN and FPTC) [20, 21], Hierarchically Per-
formed Hazard Origin and Propagation Studies (HiP-HOPS) [22], Error Model
Annex of Architecture Analysis and Design Language (AADL) [23], and AltaR-
ica language. In the authors’ experience, only latter three languages have matured
beyond the level of research prototypes.

The original language of AltaRica, developed by LaBRI, is based on the no-
tion of interfaced constraint automata, and is highly expressive. In this paper, we
adopt the restricted dialect of AltaRica, called AltaRica Dataflow, that was later
developed to restrict the complexity of the models and, under certain constraints,
to permit the synthesis of the fault trees [24, 25].

The reference formal characterization of AltaRica is defined in [11]. Here we
provide a richer formal characterization, driven by the need to recursively define
a translation towards the HyDI language. In particular, we defined an abstract
syntax of AltaRica, and a recursively defined semantics. In particular, our abstract

4

syntax differs from the one presented in [11] in that it directly defines concepts
like the input and output flows, which are widely used in the concrete language,
while it simplifies less useful notions, like the global coordination expressed by
observer nodes.

There exist several tools for modeling in (various dialects of) AltaRica. Among
these, we mention the academic toolset developed and maintained at the Univer-
sity of Bordeaux [10]; SIMFIA [26], a modelling, simulation and RAMS analysis
environment developed by EADS APSYS that supports a Dataflow dialect similar
to that implemented by OCAS; COMBAVA, developed by ARBoost Technolo-
gies, and now obsolete.

OCAS is tightly integrated with Cecilia ARBOR - a Fault Tree Analysis soft-
ware. Quantitative and Qualitative analysis of fault trees performed in both Ce-
cilia ARBOR and SIMFIA Safety modules are based on Aralia [27]. Whilst there
also exists a plugin for the synthesis of fault trees (implementing the algorithm of
[25]), such functionality is only available for a very restricted subset of AltaRica
Dataflow.

In practice, AltaRica models in OCAS are analysed by the sequence generator,
which analyses the model and, depending on configuration, produces a set of ei-
ther sequences or sets of events that are sufficient for a particular condition in the
model to hold. Informally, if model events represent failures of components and
selected condition of interest represents a hazard, the sequence generator produces
a close equivalent of FTA’s minimal cut sets.

There are other model checkers that support AltaRica, in particular MEC 5
[28] and Arc [29]. MEC 5 is a somewhat outdated model checker that is now
superseded by Arc. Arc is a more recent, BDD-based model checker based on the
AltaRica language, which supports CTL* temporal logics and µ-calculus. Arc is
not currently linked to OCAS and the interoperability with a MEC 5 plugin has
not been supported in newer versions of OCAS. Moreover, neither Arc nor its
predecessor MEC support safety assessment functionalities. AltaRica studio [30]
is a prototypical toolset, based on Arc, for model-based formal analyses. To our
knowledge, safety assessment functionalities are not available in AltaRica studio,
yet. A thorough comparison of the model checking engines is hard because of
differences in the dialects (and flavours thereof) of AltaRica supported by the dif-
ferent tools. This work has been focused on AltaRica Dataflow - a more extended
comparison will be targeted for future work.

5

3. The AltaRica language

In this section we briefly describe the syntax of the AltaRica language, and in
particular, the Dataflow dialect and its semantics - we refer the reader to [10, 11]
for additional details. A simple example of an AltaRica model is presented in

1node main
2 event
3 t o t a l r e s e t ;
4 sub
5 cs : counters ;
6 add : adder ;
7 obs : observer ;
8 sync
9 <t o t a l r e s e t , cs . c1 . reset , cs . c2 . reset >;
10 assert
11 cs . output1 = add . input1 ,
12 cs . output2 = add . input2 ,
13 cs . output1 = obs . input1 ,
14 cs . output2 = obs . input2 ,
15 add . va lue ou t = obs . inputS ;
16 edon
17
18node counters
19 flow
20 output1 : [0 , 3] : out ;
21 output2 : [0 , 3] : out ;
22 sub
23 c1 : counter ;
24 c2 : counter ;
25 assert
26 c1 . va lue ou t = output1 ,
27 c2 . va lue ou t = output2 ;
28 edon
29
30node observer
31 flow
32 out ok : bool : out ;
33 i npu t1 : [0 , 3] : i n ;
34 i npu t2 : [0 , 3] : i n ;
35 inputS : [−1 ,6] : i n ;
36 assert
37 out ok = (inputS = (inpu t1 + inpu t2)) ;
38 edon

39node counter
40 flow
41 va lue ou t : [0 , 3] : out ;
42 state
43 value : [0 , 3] ;
44 event
45 inc , rese t ;
46 trans
47 value < 3 |− i nc −> value := value + 1;
48 value = 3 |− rese t −> value := 0 ;
49 i n i t
50 value := 0 ;
51 assert
52 va lue ou t = value ;
53 edon
54
55node adder
56 flow
57 i npu t1 : [0 , 3] : i n ;
58 i npu t2 : [0 , 3] : i n ;
59 va lue ou t : [0 , 7] : out ;
60 state
61 value : [0 , 7] ;
62 event
63 add ,
64 f a u l t a d d ;
65 trans
66 value < 7 |− add −> value := inpu t1 + inpu t2 ;
67 t r ue |− f a u l t a d d −> value := 7 ;
68 i n i t
69 value := 0 ;
70 assert
71 va lue ou t = value ;
72 edon

Figure 1: Adder example in AltaRica

Figure 1. The system consists of two modulo 4 counters and an adder. The base
component of an AltaRica model is called a node. A node is composed by the
following sections:

• event: used for defining the events that can be fired and, thus, trigger a state
transition;

• state: this section is used to declare the state variables of the (basic) node;
the value of these variables may change only upon firing of an event; this
implies that their value does not change in between two consecutive event
firings (while other components are executing);

6

• flow: this section declares flow variables, used to describe the connections
with the other components; flow variables are linked to state variables by
means of assertions; there are two types of flow variables, namely input and
output flow variables;

• init: this section is used to specify the initial value of state variables;

• trans: this section is used to describe the transitions of the system; each
transition consists of a guard, the firing event, and a list of assignments; the
assignments specify how the system state changes when the corresponding
event is fired; the guard is a precondition that has to be satisfied for the
transition to be taken;

• assert: used to establish links from a flow variable to a state variable or
another flow variable; more specifically, it declares a set of equalities either
between an output flow variable and an expression over input flow and state
variables (internal assert), or between an input flow of a subnode and the
output flow of another subnode (in-out assert), or between an input flow of
the node and an input flow of a subnode (in-in assert), or between an output
flow of the node and an output flow of a subnode (out-out assert);

• sub: used to describe the hierarchy of the AltaRica nodes; in this section,
it is possible to instantiate the subnodes that are the children of the current
node;

• sync: used to define the synchronizations; a synchronization associates an
event of the node to the events of the subnodes; there are three types of syn-
chronizations, namely strong sync, weak sync, and Common Cause Failure
(CCF) (c.f. end of this section).

An AltaRica model is a hierarchical tree composed of nodes. The nodes can
communicate through links defined in their common parent nodes. These links
can be expressed as equalities over the flow variables (i.e. in the assert section), or
via synchronizations. The AltaRica structure is composed of two types of nodes:

• equipment (main and cs white squares in Figure 2): represents a container
for nodes; it may contain declarations of subnodes, synchronizations and
flow links between subnodes, but it cannot have state variables;

• component (gray in Figure 2): represents a single process of the system, it
cannot contain definition of subnodes or synchronizations.

7

main

c1 c2

add obscs

Figure 2: Hierarchical view of adder example

as shown in figure 2, the component nodes represent the leaves, whereas the equip-
ment nodes are containers for the components. Moreover, there is a special equip-
ment node called main, which represents the root of the full AltaRica model.

The semantics of the AltaRica model is defined in terms of Interfaced Transi-
tion Systems (ITSs) (c.f. [11, 31]). Intuitively, the ITS associated with a compo-
nent is given straightforwardly by the state variables (which define the states), the
initial condition, the transitions, the events and flow variables (which define the
observations) of the node. The ITS associated to an equipment node is given by
the composition of the ITSs associated with the subnodes taking into account syn-
chronizations. The mechanisms for the different synchronizations are illustrated
in Figs. 3a, 3b and 3c.

Strong Sync. As in the example in Figure 3a, if we have a strong sync between the
events e1 and e2 (in AltaRica expressed as 〈e1, e2〉), the corresponding processes
(components) p1 and p2 must move synchronously on such events. This means that
the transitions of p1 fired by e1 and the transitions of p2 fired by the event e2 happen
atomically, and that e1 is fired if and only if e2 is fired; as an example, the system
in Figure 1 declares a strong synchronization, called total reset, synchronizing
the reset on the two counters.

Weak Sync. Figure 3b expresses the behavior of weak sync. This type of synchro-
nization represents a broadcast; participating events happen synchronously as in
the strong sync, but only if the corresponding transitions are enabled; this means
that if the event e1 of p1 is fired and there exists a transition t2 of p2 on the event
e2 whose guard is true, then e2 is fired at the same time as e1; otherwise (if the
guard is false) e1 is fired and p2 does not change state; similarly, if e2 is fired and

8

𝑒1

𝑒2

𝑃1
𝑃2

𝑆1
′ , 𝑆2

′

𝑆1, 𝑆2𝑆2

𝑆2
′

𝑆1 𝑆1
′

(a) Strong synchronization

𝑒1

𝑒2

𝑃1
𝑃2

𝑆1
′ , 𝑆2

′

𝑆1, 𝑆2𝑆2

𝑆2
′

𝑆1 𝑆1
′

𝑆1
′ , 𝑆2

𝑆1, 𝑆2
′

(b) Weak synchronization

𝑒1

𝑒2

𝑃1
𝑃2

𝑆1
′ , 𝑆2

′

𝑆1, 𝑆2𝑆2

𝑆2
′

𝑆1 𝑆1
′

𝑒1

𝑒2

𝑆1
′ , 𝑆2

𝑆1, 𝑆2
′

(c) CCF synchronization

Figure 3: AltaRica synchronizations: in each figure the bottom right corner represents the allowed
transitions in the composition of the two systems. Dashed arrows represent a transition where both
P1 and P2 move (i.e. the fired event in the composition is e1/e2), while solid arrows represent a
local transition.

the guard on e1 is false, p1 does not change state. Such kind of synchronization is
expressed in the AltaRica language using as 〈e1|e2| . . . |en〉.

CCF Sync. The Common Cause Failure (see Figure 3c) synchronization is similar
to a weak synchronization, with the difference that individual processes can move
on the events independently. This means that either we have a sync involving e1
and e2 (with the same rules of the weak sync) or e1 is fired or e2 is fired. The
motivation for CCF sync is to describe the condition when two components can
fail due to an internal error, represented by the e1 and e2 events, or by means of
a common cause, for instance the engine burst. In this case we can express such
condition using CCF (with concrete syntax as 〈e1?e2〉), where each failure can be
caused by the engine explosion (i.e. the weak sync) or by internal errors.

The evolution of an AltaRica system can be further constrained by associating
events with a specific priority. This definition is possible by providing a partial
order in the event section e.g. the highest priority of event e1 with respect to e2 it is
expressed with e1 < e2. Differently, some AltaRica based tools, support the event
priority feature by extending the language with a specific section called extern.
In the case of OCAS, the partial ordering of events is provided by labeling them
with probability distribution laws e.g. the definition of an event of type Dirac(2)
has priority respect to a Dirac(3), but not to a Dirac(0). These laws, considering
Dirac(x) as well as Exponential(x), are used to establish interoperability with
commercial RAMS (Reliability, Availability, Maintainability and Safety) analysis
tools and do not affect the qualitative behaviour of the system.

9

4. The HyDI language

The HyDI [15] language extends the standard symbolic language SMV, the
main input language of the NuSMV model checker, with continuous variables and
synchronization aspects. In the following, we disregard the continuous aspects of
HyDI, since they are not used in the translation from AltaRica. Compared to SMV,
HyDI models asynchronous components, instead of synchronous systems, which
communicate through message passing and shared variables. Since NuSMV pro-
vides an automatic mapping from HyDI to SMV, HyDI models can be analyzed by
the safety-assessment techniques implemented in NuSMV. A direct mapping from
an asynchronous language, like AltaRica, to SMV is non-trivial, time-consuming
and error prone, since the translation requires to manually encode all the asyn-
chronous aspects of the system. In practice, this amounts to modify the behavior
of all the asynchronous processes adding idle transitions, and to enforce the com-
plex synchronization constraints. Thus, the main advantage of HyDI over SMV is
to directly model asynchronous systems.

A HyDI program is given by a set of modules, a set of processes and a set of
synchronization constraints. A HyDI module extends SMV modules allowing one
to specify synchronization constraints. A module contains a set of declarations
which define: a set of variables (VAR); a set of input variables (IVAR); a set of
initial constraints (INIT) defining the initial states; a set of invariant conditions
(INVAR) which restricts the valid assignments to the variables; a set of transition
constraints (TRANS), defining the state transitions. Moreover, a module defines
a set of input parameters. A module can be instantiated in the VAR section of
another module. The module instantiation defines the actual parameters passed
to the module, thus enabling the sharing of variables among different instances.
The main module is the top-level module of a program and cannot be instanti-
ated. The HyDI language allows one to define a network of processes which run
asynchronously on private events while they synchronize on shared events. The
processes are instantiated in the main module. The network is not hierarchical,
since the synchronizations are declared between processes. However, the defini-
tion of a single process may be hierarchical, since it can contain the instantiation
of sub-modules. The module used to instantiate a process contains the definition
of the set of discrete events (EVENT section) used to define its synchronization
with other processes. In the HyDI language a synchronization declares that two
events of two processes must be fired at the same time. A variant of this type
of synchronization, called “weak” synchronization, allows one to specify a guard
which forces the synchronization only if the guard evaluates to true. Finally, the

10

order of occurrence of events can be further constrained with a scheduler, modeled
in HyDI by variables and constraints in the main module.

5. Translation from AltaRica to HyDI

5.1. Overview
In this section we describe the encoding of the AltaRica language into NuSMV.

The formal translation [31] has been designed using HyDI [15] as an intermedi-
ate language. We refer to [15] for a discussion of the translation from HyDI to
NuSMV.

In the following we detail the main steps of the translation:

• Flattening of the hierarchy: unlike AltaRica, HyDI does not support hier-
archical process definitions. Hence, we describe a preliminary step of the
translation which flattens the structure of the AltaRica program.

• Translation of flow variables and assertions: these definitions cannot be
directly mapped into HyDI;

• Translation of event priorities: HyDI does not support the definition of
event priorities;

• Synchronizations: AltaRica supports three kinds of synchronizations: strong,
weak and CCF, whereas HyDI supports only the first two.

5.2. Flattening of the hierarchy
The network of processes defined by AltaRica is hierarchical in that the syn-

chronizations may be specified at the different levels of the AltaRica tree struc-
ture. Thus, in order to encode the AltaRica specification into HyDI we perform
a flattening of the AltaRica hierarchy as depicted in Figure 4b. Each AltaRica
equipment node is split into several new instances in order to create a hierarchy
corresponding to the paths from the root to each leaf. This flattening is possible
since the instances of the equipment nodes cannot have definition of state vari-
ables.

For the flattening it is necessary to perform some additional transformations
on the resulting structure because of the constraints imposed by the HyDI lan-
guage. In AltaRica synchronization definitions can be specified at all levels of
the hierarchy (i.e., in the equipment nodes). In HyDI they must be in the main
module. Thus, we need to move all the synchronization definitions to the top level

11

main

c1 c2

add obscs

(a) AltaRica structure

main

c1 c2

add obscs’ cs’’

(b) HyDI structure

Figure 4: Hierarchy translation

HyDI main module. Another difference between HyDI and AltaRica concerns the
definition of discrete events used in the synchronizations. In HyDI the declaration
of discrete events is done in the module definition of each instance and, thus, new
events cannot be declared in a submodule. AltaRica, on the other hand, requires
them to be specified within the leafs (i.e., in the component nodes). Our solution
restructures the AltaRica hierarchy in such a way that all the events present in the
original AltaRica structure are declared in the definition of an instance in HyDI,
and passed as parameters to the submodules. The drawback of this encoding con-
sists in the possible growth in terms of resulting model size. However, this so-
lution does not increase the complexity and also greatly simplifies the translation
from AltaRica to HyDI. Finally, the translation of the leaf nodes is straightfor-
ward. Each leaf node maps to an SMV module. Each state variable is encoded
into an SMV state variable of the same type. The AltaRica init and trans sections
directly translate into SMV INIT and TRANS formulas, respectively.

5.3. Translation of variables and assertions constraints
AltaRica allows one to define two types of variables: state variables (which

represent the internal state of the system) and flow variables (used to expose the
internal state and to link the different components). The translation of the state
variables is straightforward, as they also become state variables in HyDI. The
translation of the flow variables is carried out as follows:

• Internal assert: the link between output flow and state variables is expressed

12

N1

N2

(a) Case In-Out

N4

N3

(b) Case In-In and Out-Out

Figure 5: Flow translation cases

by an assertion. In this case the flow variable is represented as a NuSMV
define on the state variable;

• In-Out (Figure 5a): in this case we have a link connecting an input flow
of one component with an output flow of another component. In this case
the direction is explicitly expressed by the flow labels. This is translated by
passing the state variable referred to by the output flow as a parameter to
the module translating the component with the input flow;

• In-In (Figure 5b red links): this situation is represented by the direct for-
warding of an input flow to a subcomponent. In this case the solution is
analogous to the previous case, with the difference that the external compo-
nent plays the writer role;

• Out-Out (Figure 5b blue links): this case is similar to the previous one with
the difference that the subcomponent plays the role of writer.

5.4. Translation of priorities and synchronization constraints
In AltaRica it is possible to define priorities that induce a partial order among

events. This feature is encoded into HyDI by defining an explicit scheduler that
imposes such priority constraints over the events.

The AltaRica language permits the definition of three possible kinds of syn-
chronizations between events: strong, weak, and CCF (see Figure 3 and Sec-
tion 6.2). HyDI has native support for the weak and strong synchronizations,
while there is no support for the CCF synchronization. We encode the CCF syn-
chronization taking into account its semantics: a CCF involving two events e1

13

and e2 is either a weak synchronization among e1 and e2, or simply event e1 or
event e2 in isolation. Thus, we duplicate events e1 and e2 in e′1 and e′2, respec-
tively, to enable for the two events to occur in isolation, and we add a new weak
synchronization between e1 and e2.

6. Formal Properties of the Translation

This section provides a formal definition of the translation from AltaRica to
HyDI. We first provide the formal semantics of the AltaRica and the HyDI lan-
guages, and then we formally define the translation from AltaRica to HyDI, prov-
ing the correctness of the overall approach. The semantics of AltaRica and HyDI
has been formalized using a standard model-theoretic approach to the definition
of the semantics of formal languages. In particular, AltaRica and HyDI programs
are interpreted with a variant of transition systems, as usual in model checking.
This was preferred to other approaches to formal semantics, such as for example
Structural Operational Semantics [32], that are well established for programming
languages.

6.1. Background
In this section we define some background notions used to define the semantics

of the AltaRica language. We will define the semantics of AltaRica using an
extension of a labeled transition system, called Interface transition system [11]
(ITS).

Definition 6.1 (Interfaced Transition System [11]). An Interfaced Transition Sys-
tem (ITS) is a tuple A = 〈E,O,C, I, π, T 〉 where:

• E is set of events, ε ∈ E;

• O is a set of observations;

• C is a set of configurations (i.e. states of the systems);

• I ⊆ C is the set of initial configurations;

• π : C → O is a function mapping each configuration c ∈ C to an observa-
tion π(c) ∈ O;

• T ⊆ C × E × C is a set of transitions, such that 〈c, ε, c〉 for each c ∈ C.

14

An ITS extends a labeled transition system with a set of observations O and the
mapping function π. Intuitively, π defines a mapping from each state of the sys-
tem, also called configuration, to an observation in O. O is defined generically,
and represents a set of states observable by another ITS. The observation are used
to expose the internal state of a component to its parent, in a hierarchical compo-
sition of ITSs. Note that AltaRica features this hierarchical structure. Also, the
label ε is used to denote the stuttering event. Intuitively, ε labels the transition
〈c, ε, c〉 that does not change the configuration of the ITS. This transition is used
to synchronize with other ITS, with the implicit meaning the ITS is not changing
its configuration, thus modeling asynchronous behaviors in a synchronous setting.

Given an ITSA and an ordering relation<E over the events ofA, we define the
priority resolution operation. The operation defines a new ITS A<E

, which differ
from A only for the transition relation. The transition relation of A<E

contains
only the transitions with higher priority (according to <E). Formally:

Definition 6.2 (Priority resolution). Given an Interfaced Transition SystemA =
〈E,O,C, I, π, T 〉 and an ordering <E over E, we define the priority resolved ITS
A<E

= 〈E,O,C, I, π, T �<E〉, where T �<E= {〈c, e, c′〉 ∈ T | @〈c, e′, c′′〉 ∈
T, e′ <E e}.

Both AltaRica and HyDI feature a symbolic representation of the system,
where set of states and relations are represented by formulas. Given a set of
variables V , we use V ′ to denote the set of next state variables {v′}v∈V , where
v′ represents the next value of v. Given a set of variables V = {v1, . . . , vn} and
a prefix p, we will denote with p.V the set of variables p.V = {p.v1, . . . , p.vn},
obtained by renaming all the variables by adding the prefix “p.”. In the following,
we use the standard notation for propositional logic s |= φ(V), to express that s is
a model of the formula φ(V). A state of the system becomes an assignment to the
variables V . A set of states is represented by a formula α(V) over the variables V :
a state s belongs to the set if s, as an assignment, makes the formula true (namely,
s |= α(V))

We will often use an evaluation function σ, which returns the set of all the
possible assignments to the variables in the set V . If V is the set of variables of a
system, then σ(V) returns the set of all the states of the system.

Definition 6.3 (Evaluation function). Given a set of variables S = {s1, . . . , sn}
the evaluation function σ is defined as: σ(S) = {(s1 = v1, . . . , sn = vn)| vi ∈
Dom(si)}.

15

6.2. The semantics of AltaRica
6.2.1. Syntax

In Definition 6.4 we provide a variant of the abstract syntax of the AltaRica
language described in [11]. The motivation for introducing a different definition
of the AltaRica syntax is to have an abstract syntax that is closer to the concrete
one and that clarifies the definition given in the original presentation. In partic-
ular, we define a relational function between flow variables that differs from the
original one that is expressed by means of a controller node. Then, for clarity we
explicitly split the mapping between state and flow variables and the invariants
over flow variables, which are merged in the concrete syntax (section “assert”).
Moreover, we need to avoid the possibility of constraining input flow variables
due to the fact they are read-only ports. This limitation is guaranteed by the fact
that output flows are defined over input flows and state variables. However, we
need also to impose a single assertion for each output flow in order to avoid indi-
rect and transitive constraints e.g., if we have output = input and output = 1,
it implicitly defines that input = 1. Moreover, we allow for a hierarchy defini-
tion by permitting composition of AltaRica nodes, and this permits us to provide
a clear separation between abstract syntax and semantics, which is expressed via
the Interfaced Transition System. Finally, our definition of the AltaRica structure
is based on a symbolic representation.

Definition 6.4 (AltaRica Node). An AltaRica node is a tupleN = 〈E,<E, S, F, I,
T, P,N1, . . . , Nn, A, V 〉, with n ≥ 0, where:

• E is a set of events partially ordered by <E .

• S is the set of state variables;

• F = FI ∪ FO is the set of flow variables, split into input and output flows,
with FI ∩ FO = ∅

• I(S) is the initial formula;

• T (S, FI ,ΓE, S
′) is the transition formula;

• P : FO → Expr(S) is a function mapping output flow variables to expres-
sions over state variables;

• ∀i = 1, . . . , n Ni = 〈Ei, <Ei
, Si, Fi, Ii, Ti, Pi, Ni1, . . . , Nim, Ai, Vi〉, with

m ≥ 0, is an AltaRica node, called sub-node;

16

• A(F,N1.F1, . . . , Nn.Fn) is an invariant formula over the flow variables
representing the assert section (Ni.Fi is the set of flow variables of the sub-
node Ni); thus, A is in the form of a conjunction of equalities v = e, one
for every variable v in FO ∪

⋃
1≤i≤nNi.FiI , where e is an expression over

S ∪ FI ∪
⋃

1≤i≤nNi.FiO;

• V ⊆ E? × E?
1 × ... × E?

n is the set of synchronization vectors defined over
the extended sets of events E?

i = Ei∪{e? | e ∈ Ei−{ε}} (i.e., Ei? contains
also a copy of the events marked with the ? symbols). If n > 0, V always
contains the vector ~ε = 〈ε, ..., ε〉.

With the symbol ΓE we denote a variable with Dom(ΓE) = E that is used to
represent the current event of the system. For example, the transition constraint
(ΓE = e1) → counter′ = counter + 1 describe a transition where the counter
variable is incremented by 1 if the event is e1 (i.e., the label of the transition is e1).

An AltaRica program is hierarchically defined as a tree of AltaRica nodes,
where only the leaves contain state variables and define a transition relation, while
the other nodes define the interaction among their children. We indenty the Al-
taRica program with the root node of the tree. We define two kinds of nodes, the
internal nodes, of type equipment, and the leaf node, of type component.

Definition 6.5 (Types of AltaRica node). An AltaRica node N = 〈E, <E, S, F,
I, T, P,N1, . . . , Nn, A, V 〉 can be of two different types:

• Equipment type: if S = ∅, I = True, T = True, and P is such that
P (f) = True for each f ∈ FO.

• Component type: if n = 0, A = True, and V = ∅.

The interaction between an AltaRica node and its sub-nodes is defined by the
relation over flow variables and the synchronization vectors.

The flow variables represent the configuration a component that are visible by
the other components. In particular, the function P associates an expression over
the state variables S to a specific flow variable f ∈ F0. They directly map to an
internal assert in the concrete syntax. Moreover, the interaction between the flow
variables of a component and of its subnodes can be constrained by the invariant
section A. The invariant section A represents the in-out assert, the in-in assert
and the out-out assert of the concrete AltaRica syntax.

The synchronization vectors model a message-passing style of communica-
tion, allowing complex patterns like broadcasting messages. For instance, it is

17

possible to model the response to a failure in the system. Suppose that, in response
to a failure, a controller broadcasts to all the engines the message “turn off ”. The
communication must be non-blocking to model also the failure of the engines (i.e.
when the engine cannot be turned off). Suppose the system is composed by 4
components, a controller, an observer and two engines. Then, the synchronization
vector 〈 failure sync, failure, ε, turn off?, turn off? 〉 represents a set of several
synchronization instances: {〈 failure sync, failure, ε, turn off, turn off 〉,
〈 failure sync, failure, ε, ε, turn off 〉, 〈 failure sync, failure, ε, turn off, ε 〉, 〈 fail-
ure sync, failure, ε, ε, ε 〉} (recall that the first event in the tuple is the event of
the parent ITS node). The set represents all the possible actions performed by the
system. The question mark appended to an event in the synchronization vector
specifies that the event is non-blocking, thus allowing different instances of syn-
chronization (e.g., the question mark models the fact that an event “can happen”,
but this is not mandatory). In the following, we use the notation Inst(v) to denote
all the instances of a synchronization vector v.

The synchronization vector can represent the three types of synchronization
of the concrete syntax of AltaRica. For example, the synchronization vector
{〈failure sync, failure, ε, turn off, turn off〉 represent a strong synchroniza-
tion on the event failure sync of the parent ITS (in the synchronization the first
component moves on failure, the second moves on stutter, the third and the
fourth move on turn off). A weak synchronization is expressed appending the
question mark ? to an event. For example 〈failure sync, failure, ε, turn off?,
turn off?〉 is a weak synchronization. Finally, a CCF synchronization can be
represented with several synchronization vectors. One vector defines a weak syn-
chronization (i.e. if one of its instances fire, it means that a synchronization hap-
pened), while the other vectors describe the movement of single components with
their own event (i.e. it means that no synchronization happened). For example, the
following vectors represent a CCF synchronization: {〈failure sync, failure?, ε,
turn off?, turn off?〉 and {〈failure, failure, ε, ε, ε〉, 〈turn off, ε, ε,
turn off, ε〉, 〈turn off, ε, ε, ε, turn off〉}.

Definition 6.6 (Instances of a synchronization vector). Given a synchronization
vector v = 〈e0, . . . , en〉 of an AltaRica node A, u = 〈u0, . . . , un〉 ∈ Inst(V) if for
all 1 ≤ i ≤ n it holds that: (i) if ei ∈ Ei, then ui = ei; (ii) if ei = b?, b ∈ Ei \{ε},
then ui ∈ {b, ε}.

6.2.2. Semantics
The semantics of an AltaRica program is obtained by applying recursively the

definition of the semantics for each subnode of the tree, starting from the root.

18

Thus, we provide the semantics for the two types of AltaRica nodes.
Given an AltaRica node N = 〈E,<E, S, F, I, T, P, N1, . . . , Nn, A, V 〉, let

ITSN = 〈E ′, O′, C ′, I ′, π′, T ′〉 be the ITS that defines the semantics of N . We
define the ITSN of the root node A by recursively defining the ITS of all its
subcomponents in the tree (e.g., similarly to a post-order visit).

ITS of a component node. If N is of type component then ITSN is defined as:

• E ′ = E;

• O′ = σ(F);

• C ′ = {c = 〈s, f〉 | s ∈ σ(S), f ∈ σ(FO), s |= P (f)};

• I ′ = {c ∈ C ′ | c |= I(S)};

• π′ : C ′ → O′ is such that ∀c ∈ C ′, c = 〈s, f〉, π′(s) = f ;

• T ′ = T ′′ �<E , where T ′′ = {〈c, e, c′〉 ∈ C × E × C ′ | 〈c, e, c′〉 |= T};

The ITSN has the same events of the AltaRica node. Its configurations are all
the possible assignments to the state and output flow variables of N that satisfy
the function P (i.e. which intuitively define the value of each flow variable as a set
of values of S). The observations are defined by all the possible assignments to
the flow variables F , and the initial states by all the configurations that satisfy I .
Then, the mapping from a configuration c to an observable is the projection of each
configuration c = 〈s, f〉 on S. Finally, the transition relation T ′ is represented by
the set of tuples composed of a source configuration, an event, and a destination
configuration that satisfy T , and later restricted according to the priorities <e.

ITS of an equipment node. If N is of type equipment, we define the ITSN as fol-
lows. First, ∀1 ≤ i ≤ n,Ni is an AltaRica node and ITSi = 〈E ′i, O′i, C ′i, I ′i, π′i, T ′i 〉
is its associated ITS.

We define ITSN as follows:

• E ′ = E;

• O′ = σ(F);

• C ′ = {(o, c1, . . . , cn) ∈ O′ × C ′1 × . . .× C ′n | (o, c1, . . . , cn) |= A};

• I ′ = {(o, i1, . . . , in) ∈ O′ × I ′1 × . . .× I ′n};

19

• π′ : C ′ → O′ is such that π′(o, c1, . . . , cn) = o;

• T ′ = T ′′;

In the case of an equipment node, the set of configurationsC ′ is constructed by the
product of its observables and the configurations of its subcomponents. Similarly,
this happens for the set of initial states. The mapping π′ for a configuration c =
〈o, c1, . . . , cn〉 is simply o.

Instead, the definition of the transition relation T ′′ is more convoluted and it is
defined in a constructive fashion as follows.

1. This step defines the set TC , which contains all the transitions obtained con-
sidering all the instances of synchronization vectors V .
Let Vlocal = {v | |v| = n,∃i ∈ [1, n], ei ∈ Ei,∀j ∈ [1, n], j 6= i, ej = ε} be
the set of the local events of a component.
Let W =

⋃
v∈V ∪Vlocal Inst(v) × {v} be the set of pairs composed by an

instance of a synchronization vector v (either from V or Vlocal) and the syn-
chronization vector v.
Then Tc ⊆ C ′×W×C ′ contains all the elements 〈(c1, . . . , cn), 〈e, e1, . . . , en, v〉,
(c′1, . . . , c

′
n)〉 such that:

• for all i = 1, . . . , n, 〈ci, ei, c′i〉 ∈ Ti.
• for all c ∈ C, 〈c, (ε, . . . , ε, ~ε), c〉 ∈ Tc.

2. This step defines the set TB, that restricts TC considering only the transitions
that maximize the number of components that synchronize.
Let u = 〈e, e0, . . . , en〉, u′ = u = 〈e′, e′0, . . . , e′n〉. We say that u @ u′ iff
the number of events different from ε in u is greater than u′ (i.e. in u more
components move).
We define the partial order <W on transition instances 〈u, v〉, 〈u′, v′〉 ∈ W :
(u, v) <W (u′, v′) if and only if v = v′ and u @ u′.
Then, we restrict TC considering only the transitions that have a maximal
number of components that synchronize. Formally, TB = TC �<W .

3. We define TA ⊆ C ′×E ′×C ′, the transition relation restricted to the events
E ′ of ITSN . 〈c, e, c′〉 ∈ TA either if:

• there existsw = (e, e1, ..., en, v) ∈ W such that e ∈ E ′ and 〈c, w, c′〉 ∈
TB.

• 〈c, e, c′〉 = 〈c, ε, c〉, for some c ∈ C ′.

20

4. Finally, we apply the ordering <′E to TA, i.e. T ′′ = TA �<E .

6.3. The semantics of HyDI
In this section, we introduce the HyDI language, its syntax1 and semantics.

6.3.1. Syntax
A HyDI network is composed of a set of processes, a set of synchronizations

and a set of global constraints over the variables of the processes. Each process
M is described with a set VAR of state variables.

Each process contains an enumerated type variable EVENT, which is used as
guard for the transitions of the process. A specific value S in the domain of EVENT

is used to represent the stuttering of the process, while other processes are asyn-
chronously active. When a process performs the action S, its state does not change.
The synchronizations and global constraints can range over the variables EVENT

of a process, thus forcing stuttering and synchronizations.

Formally, an HyDI processM is a tuple 〈PARAM, VAR, IVAR, INIT, TRANS, INVAR〉
where:

• PARAM is the set of parameters;

• VAR is the set of state variables;

• IVAR is the set of input variables;

• INIT is the initial formula over the variables PARAM ∪ VAR;

• TRANS is the transition formula over the variables VAR ∪ PARAM ∪ IVAR

∪ VAR′ (note that the parameters can only be read by the process);

• INVAR is the invariant formula over the variables PARAM ∪ VAR.

An HyDI network H is a tuple 〈M, VAR, IVAR, INIT, INVAR, TRANS, SYNCH ,
WEAKSYNCH ,MAP〉 where:

1In order to ease the presentation and the description of the translation, we give an abstract
version of HyDI without considering modules and their instantiation. The reader may refer to [15]
for a complete description of the language.

21

• M is a set of processes where, for all M ∈ M, M = 〈PARAMM , VARM ,
IVARM , INITM , TRANSM , INVARM〉 is a process where EVENTM ∈ IVARM
(we denote with EM the domain of EVENTM),

• VAR is a set of variables (we identify the set of all the variables of a network
with VARH = VAR ∪

⋃
M∈MM.VARM);

• IVAR is a set of input variables (we identify the set of all the input variables
of a network with IVARH = IVAR ∪

⋃
M∈MM.IVARM);

• INIT is an initial condition over VARH ; INVAR is the invariant formula over
VARH .

• TRANS is a transition condition over VARH ∪ IVARH ∪ VAR′H ;

• SYNCH is a set of strong synchronizations, which contains tuples of the
form {〈i, j, ai, aj〉, where i, j ∈M, ai ∈ Ei and aj ∈ Ej;

• WEAKSYNCH is a set of weak synchronizations, which contains tuples of
the form 〈i, j, ai, aj, φi, φj〉, where i, j ∈ M, ai ∈ Ei, aj ∈ Ej and φi, φj
are formulas over VARi ∪ IVARi and VARj ∪ IVARj respectively. φi and φj
are called guards of the synchronization;

• MAP is a binding function that maps every p ∈ PARAMM of every M ∈M
into an expression MAP(p) over VARH . Given a formula φ, MAPSUBS(φ)
denotes the formula obtained by replacing every occurrence of p in φ with
MAP(p), for all p ∈ PARAMM of every M ∈M.

HyDI features two different types of synchronizations. A strong synchro-
nization {〈i, j, ai, aj〉 enforces two processes i and j to perform a transition la-
beled with the event ai and aj at the same time. A weak synchronization 〈i, j,
ai, aj, φi, φj〉 forces the processes i and j to perform a transition labeled with ai
and aj at the same time if both φi and φj hold. Otherwise, in the case φi holds and
φj does not hold, i may move on the event ai, while j stutters. A similar behavior
happens by inverting the roles of i and j. Intuitively, when both the transitions
labeled with ai and aj are enabled, i and j must synchronize. In the case one of
the two processes cannot move on the synchronization event, because its guard is
false, the other is not blocked and can move on the synchronization event. More
general synchronization policies between the processes can be specified by means
of the global constraint TRANS, since it can range over the variables EVENT of the

22

processes. For example, this feature may be used to encode priorities constraints
among the synchronization of the network.

Note that we also allow the modeling of shared variables between different
instances, with the restriction that only the process which declares a variable can
write its value, while the other processes can only read the value of the variable.
The restriction is expressed in the fact that the formula TRANSM of each process
M can only change its next state variables VAR′ but not the parameters PARAM.

We remark that in the scope of this paper, the sets VAR and IVAR of the network
are always empty and that the set IVARM of every processM always contains only
EVENTM .

6.3.2. Semantics
We define the semantics of a HyDI networkH = 〈M, VAR, IVAR, INIT, TRANS,

INVAR,MAP〉, where everyM ∈M is such thatM = 〈PARAMM , VARM , IVARM ,
INITM , TRANSM , INVARM〉.

First, for every M ∈ M, we define the formula TRANSS
M as TRANSM∧

(EVENTM = S →
∧
v∈VARM

v′ = v) (i.e., the frame conditions are added for the
stuttering event).

Then, we define the semantics of the synchronization constraints SYNCH and
WEAKSYNCH . Each strong synchronization {〈i, j, ai, aj〉 ∈ SYNCH is encoded as
follows:

SYNC〈i,j,ai,aj〉 = ((i.EVENT = ai)↔ (j.EVENT = aj)).

Then, each weak synchronization 〈i, j, ai, aj, φi, φj〉 is encoded with the following
formula:

WEAKSYNC〈i,j,ai,aj ,φi,φj〉 =((i.EVENT = ai ∧ φ′j)→ j.EVENT = aj)∧
((j.EVENT = aj ∧ φ′i)→ i.EVENT = ai)∧
((i.EVENT = ai ∧ ¬φ′j)→ j.EVENT = S)∧
((j.EVENT = aj ∧ ¬φ′i)→ i.EVENT = S)

where φ′i (φ′j) are obtained from φi (φj) by renaming each variable v with i.v (j.v)
and substituting each parameter p of Mi (Mj) with MAP(p).

Since the synchronization constraints are declared between pairs of processes,
we define the transitive synchronization relation SYNC∗ from SYNC and WEAKSYNC.
A tuple 〈i, j, ai, aj〉 is in SYNC∗ if 〈i, j, ai, aj〉 ∈ SYNC or 〈i, j, ai, aj, φi, φj〉 ∈

23

WEAKSYNC, for some φi, φj , or there exists a sequence of processes l1, l2, . . . , ln
such that 〈lk, lk+1, alk , alk+1

〉 ∈ SYNC∗ for 1 ≤ k < n, i = l1 and j = ln.

Example 1. Consider three processes i, j, k with the synchronization constraints
〈i, j, ai, aj〉 and 〈j, k, aj, ak, φj, φk〉. When the process i synchronizes with the
process j on the events ai and aj , also the process k may also synchronize with the
process j, on the event ak. Thus, in this example SYNC∗ = {〈i, j, ai, aj〉, 〈j, k, aj, ak〉,
〈i, k, ai, ak〉}. Note that the encoding of the WEAKSYNC synchronization forces
stuttering of the process k if j moves on aj and φk does not hold.

The relation of SYNC∗ is used to encode the interleaving semantics of the pro-
cesses:

INT =
∧

i,j∈M,
i 6=j

(
∧
aj∈Ej

(j.EVENT = aj →
∧

ai∈Ei,
〈i,j,ai,aj〉/∈SYNC∗

i.EVENT = S))

The constraint INT encodes the interleaving of the processes in the network. In
practice, INT encodes that when some processes move, all the processes that do
not synchronize with them must stutter.

Moreover, we define the constraint NOSTUTTER, which ensures that at least
one process does not perform the stutter action:

NOSTUTTER =
∨
i∈M

i.EVENT 6= S

Now we can define the process associated to the HyDI network H as follows:

MH = 〈∅, VARH , IVARH , INIT ∧MAPSUBS(
∧
M∈M INITM),

TRANS ∧MAPSUBS(
∧
M∈M TRANSS

M)〉∧
(
∧
w∈WEAKSYNC WEAKSYNCw) ∧ (

∧
s∈SYNC SYNCs) ∧ INT ∧ NOSTUTTER,

INVAR ∧MAPSUBS(
∧
M∈M INVARM)〉.

In the last step we define the semantics of a process M with an ITS. Note that
this also defines the semantics of the process MH associated to a network H . We
will call ITSH the ITS that defines the semantic ofMH , and thus of the HyDI pro-
gramH . The semantics of a processM = 〈PARAM, VAR, IVAR, INIT, TRANS, INVAR〉
is defined by the ITS C(M) = 〈E,O,C, I, π, T 〉 as follows:

• E is the set of assignments to the variable IVARM ,

• C is the set of assignments to the variables VARM ∪ PARAMM ,

24

• O = C and π is the identity function,

• I = {s ∈ C | s |= INITM(VAR) ∧ INVARM(VAR)},

• T = {(s1, a, s2) ∈ C×E×C | s1, a, s′2 |= INVARM(VAR)∧TRANSM(VAR,
PARAM, IVAR, VAR′) ∧ INVARM(VAR′)}.

6.4. Translation
6.4.1. Flattening of the AltaRica hierarchy

The first step of the translation from AltaRica to HyDI is the flattening of the
AltaRica program. The flattening is necessary since the target language, HyDI,
does not allow us to define synchronization constraints across intermediate nodes,
since it does not handle hierarchical asynchronous processes. Thus, our transla-
tion first performs a flattening of the AltaRica program, moving all the synchro-
nization vectors and the constraints among flow variables in the root node of the
program. The flattening procedure takes as input an AltaRica program, which rep-
resent a tree of AltaRica nodes, and translates them in a flattened AltaRica node.

Definition 6.7 (Flattened AltaRica node). An AltaRica nodeN = 〈E,<E, S, F,
I, T, P,N1, . . . , Nn, A, V 〉 is flattened if (i) N is of type equipment and (ii) each
node N1, . . . , Nn is of type component.

We use a “dot notation” to identify the variables of subcomponents during the
flattening. For example, when flattening the child node n1 of a node n, we will
write a variable b of n1 as n1.b in the node n. We extend the “dot notation” to
sets of variables in the intuitive way (i.e. if V is a set of variables, b.V = {b.v |
v ∈ V }). Let FL define the recursive function that flattens an AltaRica node and
FLE a function that substitute a single equipment node with all its children. We
will first define FL and then FLE . We will use the predicates ISCOMP(N) (resp.
ISEQUIP(N)) that are true iff N is a node of component (resp. equipment type).
We will write N [Ni/Nj] to denote a node which is the copy of N where the child
Nj was substituted with the component Ni. Also, let CHILDREN(N) be the list of
children of the node N .

FL(N) :=



N if ∀Ni ∈ CHILDREN(N), ISCOMP(Ni)

FL(N [FL(Nj)/Nj])
if ∃Nj ∈ CHILDREN(N),

∃Nl ∈ CHILDREN(Nj), ISEQUIP(Nl)

FL(FLE(N))
if ∃Nj ∈ CHILDREN(N),

∀Nl ∈ CHILDREN(Nj), ISCOMP(Nl)

25

Intuitively, in the first case of FL(N)N is a flattened node. In the second case,
N has at least one child (Nj) that has as child an equipment node (Nl). Thus, FL

must be applied recursively to get rid of the nested equipment node Nl. Finally,
in the third case all the children of Nj , a child of N , are components node. Thus,
Nj is “merged” with N using the function FLE , that moves all its children in N .

Now, we define the flattening FLE(N).
Let N = 〈EN , <EN

, SN , FN , IN , TN , PN , N1, . . . , Nn, AN , VN〉 be an AltaR-
ica node such that:

• ISEQUIP(N).

• ISEQUIP(N1) (without loss of generality, to simplify the presentation we
assume that the first node is of type equipment).

• ∀Ci ∈ CHILDREN(N1), ISCOMP(Ci).

We will refer to the children of N1 as C1, . . . , Ck.
Then, N ′ = FLE(N), with N ′ = 〈EN ′ , <EN′

, SN ′ , FN ′ , IN ′ , TN ′ , PN ′ ,
C1, . . . , Ck, N2, . . . , Nn, AN ′ , VN ′〉, be defined as:

• EN ′ = EN ;

• <EN′
=<EN

;

• SN ′ = >;

• FN ′ = FN ∪N1.FN1;

• IN ′ = >;

• TN ′ = >;

• PN ′ is such that P (f) = > for each f ;

• AN ′ = AN∧AN1 [N1.FN1/FN1 , C1.FC1/FC1 , . . . , Ck.FCk
/FCk

] (where φ[N1.V/V]
denotes the formula φ where all the occurrences of variables v ∈ V have
been substituted with N1.v).

• The children of N ′ are: C1, . . . , Ck, N2, . . . , Nn.

26

• V ′ := Vexp ∪ VLOCAL, where

Vexp :=
⋃
v∈VN

exp(v)

exp(〈e, e1, . . . , en〉) :=

{
exp′(〈e, e1, . . . , en〉) if ∃l1, . . . , lk, 〈e1, l1, . . . , lk〉 ∈ VN1

{〈e, ε, . . . , ε, e2, . . . , en〉} otherwise

exp′(〈e, e1, . . . , en〉) := {〈e, l1, . . . , lk, e2, . . . , en〉 | 〈e1, l1, . . . , lk〉 ∈ VN1}
VLOCAL := {〈ε, l1, . . . , lk, ε, . . . , ε〉 | 〈e, l1, . . . , lk〉 ∈ VN1 , e /∈ V }

The set of synchronization vectors Vexp is obtained from the synchronization
vectors in VN , “expanding” all the synchronization vector of VN that con-
tains an event e1 with all the synchronization vectors from VN1 that contain
e1. Then, in VLOCAL there are all the synchronizations between the compo-
nents C1, . . . , Cn defined in N1 which do not synchronize with an external
event of N .

6.4.2. Translation from a flattened AltaRica node to a HyDI network
Let N = 〈E,<E, ∅, F,>,>, P,N1, . . . , Nn, A, V 〉 be a flattened AltaRica

node. We translate N in the HyDI network 〈M, VAR, IVAR, INIT, TRANS, INVAR,
MAP〉.

Intuitively, we translate each componentNi of the flattened node into a process
Mi ∈ M of the HyDI network. We define VAR := ∅, IVAR := ∅, INIT := >,
INVAR := A and MAP := P . TRANS is used to encode the synchronization vector
V . In the following, we give the details on the definition of the processes Mi and
the condition TRANS.

Given a synchronization vector v = 〈e0, . . . , en〉 we write v[i + 1] to refer to
the i-th element ei of v.

Let Ni = 〈Ei, <Ei
, Si, Fi, Ii, Ti, Pi,>, ∅〉 where Fi = FOi

∪ FIi . We trans-
late Ni into the process Mi = 〈PARAMi, VARi, IVARi, INITi, TRANSi, INVARi〉 as
follows:

• PARAMi := FIi;

• VARi := Si ∪ FOi
;

• IVARi := {EVENTi}, where the domain of EVENTi is {v.e | v[i + 1] =
e or v[i+ 1] = e? for some v ∈ V };

27

• INITi = Ii;

• TRANSi is obtained from Ti by replacing, for all e ∈ E, every occurrence of
Γi = e with

∨
v∈V,v[i+1]=e or v[i+1]=e? EVENTi = v.e.

In practice, TRANSi is obtained renaming the event variables and the names
of the events in the transition Ti;

• INVARi :=
∧
f∈FOi

f = P (f).

We translate each synchronization v = 〈e′o, e′1, . . . , e′n〉, v ∈ V , into the SYNC

and WEAKSYNC conditions as follows:

• If v = 〈ε, . . . , ε〉, then we do not declare any synchronization. The silent
synchronization is implicit in the HyDI semantics (i.e. the HyDI network
allows us to perform a transition where all the instances stutter).

• If v = 〈ε, . . . , ε, ei, ε, . . . , ε〉, then we do not declare any synchronization,
since transitions labeled with v.ei may be performed by the i-th process
without synchronizing with the other processes.

• Otherwise, let IdxWeak, IdxSync, Idxε be three disjoint sets of indexes such
that:

– IdxWeak ∪ IdxSync ∪ Idxε = {1, . . . , n}, IdxWeak ∩ IdxSync = ∅, IdxWeak ∩
Idxε = ∅ and IdxSync ∩ Idxε = ∅,

– for each k ∈ IdxWeak, e′j = ej? and ej ∈ Ej ,
– for each j ∈ IdxSync, e′j = ej and ej ∈ Ej ,
– for each l ∈ Idxε, e′l = ε,

then we have that:

– for all j1, j2 ∈ IdxSync, j1 6= j2, 〈Mj1 ,Mj2 , v.ej1 , v.ej2〉 ∈ SYNC.
– for all k1, k2 ∈ IdxWeak, k1 6= k2, 〈Mk1 ,Mk2 , v.ek1 , v.ek2 , φk1 , φk2〉 ∈

WEAKSYNC, where:

φk1 = ∃Γk1 ,∃S ′k1 , Tk1 ∧ Γk1 = ek1
φk2 = ∃Γk2 ,∃S ′k2 , Tk2 ∧ Γk2 = ek2

φk1 (resp. φk2) represents the set of states where the node Nk1 (resp.
Nk2) performs a transition on the event ek1 (resp. ek2). Recall that S ′k1
denotes the set of next state variables of the AltaRica node Nk1 (and
similarly for S ′k2).

28

– for all k1 ∈ IdxWeak, j1 ∈ IdxSync, 〈Mk1 ,Mj1 , v.ek1 , v.ej2 , φk1 ,>〉 ∈
WEAKSYNC, where φk1 = ∃Γk1 ,∃S ′k1 , Tk1 ∧ Γk1 = ek1 .

Note that in practice we do not perform a real quantification to compute the guards
φk1 = ∃Γk1 ,∃S ′k1 , Tk1 ∧ Γk1 = ek1 (and analogously for φk2) but we exploit the
syntax of the concrete AltaRica language. In fact, in the concrete syntax of Al-
taRica the transition are already disjunctively partitioned by the events that label
them.

6.5. Correctness
The translation of a flattened AltaRica node N into the HyDI network H is

correct, since the ITSs associated toN andH are equal (modulo an isomorphism).

Theorem 1. Let N be an AltaRica node and H be its translation to HyDI. Then,
the ITS ITSN = 〈EN , ON , CN , IN , πN , TN〉 of N and the ITS ITSH〈EH , OH ,
CH , IH , πH , TH〉 of H are equal.

The informal arguments of the correctness are simple. First, we have a bidi-
rectional mapping between each configuration of ITSN and ITSH . Thus, the sets
of states that satisfy the initial and invariant configuration of both the ITSs are the
same. Then, we have that there is a bijection between the transitions in ITSN
and ITSH , and thus both the transition systems perform the same transitions. The
complete proof can be found in Appendix A.

7. Tool Integration and Functionalities

In the following we describe the architecture of the NuSMV/OCAS plugin and
its functionalities.

7.1. The NuSMV/OCAS plugin
The NuSMV/OCAS plugin has been developed in Python. It is composed of

four main components, as illustrated in Figure 6:

• Property: this block provides a GUI to specify the (temporal) properties to
be verified and the analysis parameters, and to invoke the verification and
safety assessment routines; it extends the ‘AltaRica property’ block, which
only allows comparing a variable with a value. For example, in the AltaRica
model presented in Figure 1, OCAS needs an observer that internally eval-
uates if the output of the adder is the sum of the two counters (see out ok).
With our plugin this check is possible directly from the GUI;

29

OCAS
Sequence
generator

Simulator

...

NuSMV
sadAltarica2Hydi

Altarica Emitter

OCAS Model

Property
NuSMV-SA

Hydi2Altarica

NuSMV/OCAS Plugin

Hydi

OCAS Tools

Results

(Traces, FTs, ...)

Results

(Traces, FTs, ...)

Figure 6: The NuSMV/OCAS plugin and its integration into OCAS

• AltaRica2HyDI: this module is responsible for the translation of the AltaR-
ica model into the equivalent HyDI specification to be given as input to the
extended version of NuSMV (the NuSMV model checker extended with the
NuSMV-SA and HyDI plugins);

• HyDI/ NuSMV: the verification engine;

• HyDI2AltaRica: this module is responsible for the back conversion of the
results generated by NuSMV to a format that can be visualized or executed
within OCAS. In particular, it is responsible for the conversion of the traces
generated by NuSMV (corresponding to a simulation or to a counterexam-
ple to a property) into the XML format accepted by OCAS.

The translation from AltaRica to HyDI, provided by the AltaRica2HyDI com-
ponent, is performed in three main steps (see Figure 7):

1. Parsing: this module generates an abstract syntax tree (AST) of the AltaRica
design. This module relies on the ANTLR parser generator [33];

2. Preprocessing: this module analyzes the AST generated at parsing time to
build a new AST corresponding to the flattened AltaRica model. Moreover,
it collects common information about the structure of the design, which is
re-used in the following steps of the translation;

3. Translation: this module, based on the new AST and on the structural in-
formation previously gathered, generates an in-memory Python structure

30

ANTLRAltarica PreprocessorAST

Common
Information

AST

a2h

Altarica Walker

pydi
1

2

Hydi

3

Figure 7: The AltaRica2HyDI component

corresponding to the HyDI model. This structure is then dumped into a
textual file to be given as input to NuSMV.

The plugin calls NuSMV, waits for the results, and then converts them back into
a format that can be imported into OCAS (e.g., simulation traces to be given as
input to the sequence generator).

7.2. Functionalities
The NuSMV/OCAS plugin relies on NuSMV, which provides standard BDD-

based (for CTL and LTL) model checking techniques [34], and SAT-based BMC
(for LTL) techniques [18]. It allows one to perform guided and random simulation,
and to re-execute partial traces. Moreover, it provides optimized model checking
algorithms, developed in the MISSA project, which aim at reducing the state ex-
plosion problem with techniques that combine BDD and SAT for the verification
of invariants. For formal safety assessment the NuSMV/OCAS plugin relies on an
extended version of the NuSMV model checker, comprising NuSMV-SA [35, 8].
NuSMV-SA allows one to investigate the behavior of a system in degraded con-
ditions (that is, when some parts of the system are not working properly, due
to malfunctioning). Key techniques in this area are (dynamic) FTA, (dynamic)
FMEA, fault tolerance evaluation, and criticality analysis. More specifically, in
this context the FTA is strongly related to the computation of cutsets [27], which
are an abstraction of the counter examples that prove the reachability of an unde-
sirable behavior. The conditions “the breaking system is not responding” and “the
electrical subsystem does not provide a minimum level of power” are some exam-
ples of undesirable behaviors, and the model checking based Fault Tree Analysis
consists of generating all possible system executions that cause such conditions.
Hopefully, the reachability of such behaviors demands the triggering of at least
one component’s failure, because this is the only reasonable motivation to reach
such a hazardous conditions.

NuSMV-SA provides three main engines for safety assessment. The first two
are based on classical BDD-based or on SAT-based techniques. The BDD-based

31

engine is complete, but if the model is huge may not scale well. The SAT-based
approach is incomplete but allows one to handle very large domains. These two
basic approaches are complemented with a third complete approach, developed in
the MISSA project and called BDD+SAT, that combines BDD and SAT. It first
uses BMC techniques, up to a given depth, in order to find as much cutsets as
possible (i.e., BMC is not complete). Then a BDD-based model checking al-
gorithm performs an exhaustive analysis, starting from the results obtained with
BMC. For instance, the BMC-based analysis (until a specific depth k) can find the
cutsets f1 ∧ f2 and f2 ∧ f3. Then, in the next step, the algorithm runs the BDD-
based analysis to find all the cutsets that are different from f1 ∧ f2 and f2 ∧ f3.
The BDD+SAT approach performs well than the pure BDD approach since the
BMC-based analysis is usually faster than the BDD-based one to find counterex-
amples, and hence cutsets. Then, these cutsets are used in the BDD-based analysis
to prune the search space. The performance of the BDD+SAT approach strongly
depends on the total number of cutsets that are discovered in the first phase. In
fact, the approach is particularly efficient when the BDD analysis is only used to
prove the completeness of the results and does not have to find other cutsets.

8. Experimental Evaluation

8.1. Validation of the translation
The semantics of the language used in OCAS extends the AltaRica Dataflow

dialect by extending it with the extern section, as described in 3. However, such
extended specifications are not fully documented, neither considering the formal
semantics. Due to this fact, before starting the experimental evaluation on realistic
case studies, we were confronted with the issue of validating the semantics we
implemented with respect to the one implemented in OCAS. For the validation
we focused on trace simulation generation and trace execution functionalities that
are common to both tools. We used several small handcrafted models developed
for checking some specific conditions, in addition to some realistic case studies
developed within the MISSA project.

The validation of the tool was done using the possibility offered by OCAS
to re-execute a simulation trace on the AltaRica model, using its internal trace
simulator. The OCAS tool manual [36] guarantees that the Sequence Generator
and the trace simulator use the same semantics. Moreover, our confidence on the
correct behavior of both tools is high, since the trace simulator and the Sequence
Generator have been extensively tested by Dassault Aviation and, in all our exper-
iments, we did not find any discrepancy in the results provided by the two tools.

32

In the validation process we generated a simulation trace with the NuSMV/OCAS
plugin, and then we re-executed it in the OCAS environment. The validation flow
we used can be summarized as follows (compare Figure 8):

1. we translate the AltaRica model provided by OCAS into HyDI, and then
into SMV;

2. we either verify properties known to be not satisfied, or we generate random
simulation traces in order to obtain an execution trace, that we save in the
NuSMV XML format;

3. we translate the trace provided by NuSMV into the OCAS XML format;

4. we load the trace generated in the previous step into the trace simulator of
OCAS;

5. we verify that the state reached at the end of the trace execution is compat-
ible with the property, and with the state reported as final in the simulation
trace.

Whenever a discrepancy was detected, a thorough analysis of the simulation
execution in OCAS was carried out to identify the cause of the discrepancy and - if
needed - come up with a fix in the translation to capture the OCAS semantics. In a
few cases, the behavior shown by OCAS was found to be misleading by the users,
but this work allowed us to define a formal interpretation of the OCAS behavior
and reach a better understanding of the whole verification platform.

8.2. Verification and safety assessment on industrial case studies
In this section we discuss the comparison between the common functionali-

ties provided by the OCAS sequence generator and the NuSMV/OCAS plugin.
In particular, both tools are able to peform Fault Tree Analysis (i.e. minimal cut-
set generation). The sequence generator of OCAS is able to perform Fault Tree
Analysis (generation of minimal cutsets) up to a bounded depth (at most, 9). We
compared this feature with the Fault Tree Analysis provided by NuSMV-SA that
relies on BDD and the mixed BDD+SAT approaches. Thus, while OCAS can
only find the minimal cut-set up to a fixed depth, NuSMV-SA also guarantees the
completeness of the results. We also used the NuSMV/OCAS plugin to verify
temporal properties of the AltaRica design; as these analysis are not available in
OCAS, we can not provide a performance comparison for these functionalities.

33

OCAS
Sequence
generator

Simulator

...

NuSMV
sadAltarica2Hydi

Altarica Emitter

OCAS Model

Property
NuSMV-SA

Hydi2Altarica

NuSMV/OCAS Plugin

Hydi

OCAS Tools

Results

(Traces, FTs, ...)

Results

(Traces, FTs, ...)

1 2 3

4

5

Figure 8: Trace-based validation

For the experimental evaluation we used four industrial models developed in
MISSA. The ELEC 1, ELEC 2, and ELEC 3 models describe a simplified electri-
cal power distribution system (that resembles that of the A320 aircraft), at differ-
ent levels of detail. The BRSYS model is a realistic model of the braking system
of an aircraft. The characteristics of the models are reported in Table 1. The table
also shows the time and memory requirements needed to translate the model into
an equivalent HyDI specification. Note that time and memory increase with the
model complexity (however, the translation is performed only once for each given
model, whenever several properties have to be verified).
In the experimental evaluation, both the OCAS Sequence Generator and NuSMV-
SA were used to generate the minimal cutset for the same top level event in the
same model. In particular, the top level event used for the all the ELEC mod-
els was “Loss of power capability”, while for the BRSYS model was “Loss of
deceleration capability during landing”.

We executed the tests on a laptop equipped with an Intel 3GHz CPU, and with
4GB of RAM running Windows 7. We used a memory limit of 1GB and a timeout
of 1000 seconds. We setup OCAS with default configurations, while NuSMV-
SA performs the analysis with FTA algorithms proposed in [35]. We first com-
pared the performances of the OCAS Sequence Generator and NuSMV-SA on the
computation of the minimal cutset. The results are presented in Table 2. The
Sequence Generator reached the timeout for all models except ELEC 1, and in
Table 2 we reported the maximum search depth explored with the corresponding
time. For ELEC 1, the Sequence Generator reached the maximum allowed depth

34

States # Nodes Translation time Translation memory
ELEC 1 1.5 ∗ 105 41 1.127s 27MB
ELEC 2 2.7 ∗ 105 44 2.782s 38MB
ELEC 3 2.0 ∗ 107 51 2.811s 37MB
BRSYS 3.8 ∗ 1025 135 9.820s 69MB

Table 1: Characteristics of the industrial case studies and translation requirements (“# States”
shows the total number of states of the system computed with NuSMV-SA while “# Nodes” reports
the number of AltaRica node instances composing the model).

(that is, 9). On the right hand side, we report the performance of NuSMV-SA
using BDD and BDD+SAT algorithms. We notice that NuSMV-SA never time-
outs, and BDD+SAT performs consistently better than pure BDD, except on the
simplest model. Moreover, it is always faster than the Sequence Generator, except
on the BRSYS model (where OCAS timeouts at depth 4). Furthermore, it should
be noted that NuSMV-SA performs an exhaustive search, whereas the Sequence
Generator is incomplete, that is, it is not guaranteed to find all the cutsets. Con-
cerning memory, NuSMV-SA used up to 36 MB, whereas OCAS allocated up to
100MB. A detailed comparison is difficult, as it is not possible to trace precisely
how OCAS uses the allocated memory.

The experimental evaluation on the Fault Tree Analysis task is of high interest:
it shows that NuSMV-SA performs better than OCAS, even if OCAS is not able
to provide a complete answer to the problem.

We also evaluated the scalability of the NuSMV/OCAS plugin, as shown in
Figure 9. We notice that NuSMV-SA has a behavior that is nearly independent of
the depth of the verification. We remark that the ’step’ behavior that is visible in
some BDD+SAT plots is due to the fact that for higher depths, SAT may be able to
find additional results, which are used to prune the search space before the BDD
exploration is run. Differently, when SAT approach is able to find all the minimal
cutsets (until the specified depth) the usage of BDD is only an overhead. In effect,
in the ELEC 1 test case, pure BDD technique performs better than BDD+SAT.

9. Conclusions and Future Work

In this work we have presented a novel encoding of AltaRica models into
NuSMV, which enables verification and safety assessment of AltaRica models
using state-of-art symbolic model checking techniques. We have formally proved
the correctness of the encoding. Finally, we have integrated the encoder as a

35

OCAS NuSMV-SA
SG Search Depth BDD+SAT BDD

ELEC 1 2.4s 9 1.5s 0.9s
ELEC 2 653.7s 7 94.7s 189.2s
ELEC 3 97.7s 6 95.6s 120.2s
BRSYS 16.4s 3 22.36s 771.7s

Table 2: Sequence Generator and NuSMV-SA: FTA performance comparison

plugin into the OCAS environment, and we have experimentally demonstrated
the feasibility of the approach by evaluating the plugin on a set of industrial case
studies.

The activity gives several insights. First, formal verification technologies can
be effectively integrated with a mature and independently-developed modelling
language and environment, and can provide significant advances in terms of func-
tionalities and scalability. Second, in order to obtain a well founded solution, a
clear understanding and formalization of the source design language must be car-
ried out. A careful choice of the target language is also extremely important: in
particular, mapping AltaRica to HyDI, that is inherently able to deal with asyn-
chronous composition, turned out to be a much better choice than mapping Al-
taRica to the synchronous language of NuSMV.

As part of our future work, we plan to analyze the effectiveness of symbolic
techniques specialized to asynchronous systems [37, 38]. Finally, we plan to in-
vestigate a timed extension of AltaRica, along the lines of [39]. This extension fits
very naturally in our framework, given that the HyDI language provides a native
support for encoding networks of timed (more in general, hybrid) systems, and
can be analyzed by means of symbolic techniques [40].

References

[1] W. Vesely, F. Goldberg, N. Roberts, D. Haasl, Fault tree handbook, Tech.
Rep. NUREG-0492, Systems and Reliability Research Office of Nuclear
Regulatory Research U.S. Nuclear Regulatory Commission (1981).

[2] W. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick III, J. Rails-
back, Fault Tree Handbook with Aerospace Applications, Tech. rep., NASA
(2002).

[3] O. Lisagor, T. Kelly, R. Niu, Model-based safety assessment: Review of the
discipline and its challenges, in: ICRMS, 2011, pp. 625–632.

36

0.1	

1	

10	

100	

1000	

3	
 8	
 13	
 18	
 23	
 28	

Se
co
nd

s	

Search	
 Depth	

BDD	

BDD+SAT	

(a) ELEC 1

1	

10	

100	

1000	

3	
 6	
 9	
 12	
 15	
 18	
 21	
 24	
 27	
 30	

Se
co
nd

s	

Search	
 Depth	

BDD	

BDD+SAT	

(b) ELEC 2

1	

10	

100	

1000	

3	
 8	
 13	
 18	
 23	
 28	

Se
co
nd

s	

Search	
 Depth	

BDD	

BDD+SAT	

(c) ELEC 3

1	

10	

100	

1000	

3	
 8	
 13	
 18	
 23	
 28	

Se
co
nd

s	

Search	
 Depth	

BDD	

BDD+SAT	

(d) BRSYS

Figure 9: Scalability of BDD and BDD+SAT technology

[4] M. Bozzano, et al., ESACS: An Integrated Methodology for Design and
Safety Analysis of Complex Systems, in: Proc. ESREL, Balkema Publisher,
2003, pp. 237–245.

[5] O. Akerlund, P. Bieber, E. Boede, M. Bozzano, M. Bretschneider, C. Castel,
A. Cavallo, M. Cifaldi, J. Gauthier, A. Griffault, et al., ISAAC, a framework
for integrated safety analysis of functional, geometrical and human aspects,
Proc. ERTS 2006 (2006) 1–11.

[6] M. Bozzano, A. Villafiorita, Design and Safety Assessment of Critical Sys-
tems, CRC Press (Taylor and Francis), an Auerbach Book, 2010.

[7] The FSAP/NuSMV-SA platform. http://es.fbk.eu/tools/FSAP.

37

http://es.fbk.eu/tools/FSAP

[8] M. Bozzano, A. Villafiorita, The FSAP/NuSMV-SA Safety Analysis Plat-
form, Software Tools for Technology Transfer 9 (1) (2007) 5–24.

[9] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, M. Roveri,
Safety, dependability, and performance analysis of extended AADL models,
The Computer Journal doi: 10.1093/com.

[10] The AltaRica language. http://altarica.labri.fr/forge.

[11] A. Arnold, A. Griffault, G. Point, A. Rauzy, The AltaRica formalism for
describing concurrent systems, Fundamenta Informaticae 40 (2000) 109–
124.

[12] P. Bieber, C. Castel, C. Seguin, Combination of Fault Tree Analysis and
Model Checking for Safety Assessment of Complex System, in: Proc.
EDCC-4, Vol. 2485 of LNCS, Springer, 2002, pp. 19–31.

[13] P. Bieber, C. Bougnol, C. Castel, J.-P. Christophe Kehren, S. Metge,
C. Seguin, Safety assessment with AltaRica, in: Building the Information
Society, Vol. 156 of IFIP International Federation for Information Process-
ing, Springer, 2004, pp. 505–510.

[14] L. A. Johnson, Do-178b, software considerations in airborne systems and
equipment certification, Crosstalk, October.

[15] A. Cimatti, S. Mover, S. Tonetta, HyDI: A Language for Symbolic Hybrid
Systems with Discrete Interaction, in: EUROMICRO-SEAA, 2011, pp. 275–
278.

[16] The NuSMV model checker. http://nusmv.fbk.eu.

[17] R. E. Bryant, Symbolic boolean manipulation with ordered binary decision
diagrams, ACM Computing Surveys 24 (3) (1992) 293–318.

[18] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, Symbolic model checking with-
out BDDs, in: Proc. TACAS, Vol. 1579 of LNCS, Springer, 1999, pp. 193–
207.

[19] The MISSA Project, http://www.missa-fp7.eu.

[20] P. Fenelon, J. A. McDermid, An integrated tool set for software safety anal-
ysis, Journal of Systems and Software 21 (3) (1993) 279–290.

38

http://altarica.labri.fr/forge
http://nusmv.fbk.eu
http://www.missa-fp7.eu

[21] M. Wallace, Modular architectural representation and analysis of fault prop-
agation and transformation, Electronic Notes in Theoretical Computer Sci-
ence 141 (3) (2005) 53–71.

[22] Y. Papadopoulos, J. McDermid, R. Sasse, G. Heiner, Analysis and synthesis
of the behaviour of complex programmable electronic systems in conditions
of failure, Reliability Engineering & System Safety 71 (3) (2001) 229–247.

[23] P. H. Feiler, B. A. Lewis, S. Vestal, The sae architecture analysis & design
language (aadl) a standard for engineering performance critical systems, in:
Computer Aided Control System Design, 2006 IEEE International Confer-
ence on Control Applications, 2006 IEEE International Symposium on In-
telligent Control, 2006 IEEE, IEEE, 2006, pp. 1206–1211.

[24] M. Boiteau, Y. Dutuit, A. Rauzy, J.-P. Signoret, The AltaRica Data-Flow
Language in Use: Modelling of Production Availability of a Multi-State Sys-
tem, Reliability Engineering and System Safety 91 (7) (2006) 747–755.

[25] A. Rauzy, Mode Automata and Their Compilation into Fault Trees, Relia-
bility Engineering and System Safety 78 (1) (2002) 1–12.

[26] SIMFIA. http://www.apsys.eads.net/en/17/Software.

[27] A. Rauzy, Mathematical Foundations of Minimal Cutsets, IEEE Transac-
tions on Reliability 50 (4) (2001) 389–396.

[28] The MEC model checker. http://altarica.labri.fr/forge/
projects/mec/wiki.

[29] The Arc model checker. http://altarica.labri.fr/forge/
projects/arc/wiki.

[30] A. Griffault, G. Point, A. Vincent, AltaRica-studio : the easier way to do
model checking (2011).

[31] C. Mattarei, Definizione e sviluppo di una traduzione formale da AltaRica
ad HyDI per la verifica di sistemi avionici, Master’s thesis, Università degli
studi di Trento (2011).

[32] G. D. Plotkin, A structural approach to operational semantics, J. Log. Algebr.
Program. 60-61 (2004) 17–139.

39

http://www.apsys.eads.net/en/17/Software
http://altarica.labri.fr/forge/projects/mec/wiki
http://altarica.labri.fr/forge/projects/mec/wiki
http://altarica.labri.fr/forge/projects/arc/wiki
http://altarica.labri.fr/forge/projects/arc/wiki

[33] T. J. Parr, R. W. Quong, ANTLR: A predicated-LL (k) parser generator,
Software: Practice and Experience 25 (7) (1995) 789–810.

[34] K. McMillan, Symbolic Model Checking, Kluwer Academic Publishers,
1993.

[35] M. Bozzano, A. Cimatti, F. Tapparo, Symbolic Fault Tree Analysis for Re-
active Systems, in: Proc. Symposium on Automated Technology for Verifi-
cation and Analysis (ATVA 2007), 2007, pp. 162–176.

[36] OCAS Module System Design and Analysis, User’s manual, Dassault Avia-
tion (September 2007).

[37] A. J. Yu, G. Ciardo, G. Lüttgen, Decision-diagram-based techniques for
bounded reachability checking of asynchronous systems, STTT 11 (2)
(2009) 117–131.

[38] J. Rintanen, K. Heljanko, I. Niemelä, Planning as satisfiability: parallel plans
and algorithms for plan search, Artif. Intell. 170 (12-13) (2006) 1031–1080.

[39] F. Cassez, C. Pagetti, O. Roux, A timed extension for AltaRica, Fundamenta
Informaticæ 62 (3–4) (2004) 291–332.

[40] A. Cimatti, S. Mover, S. Tonetta, Smt-based scenario verification for hybrid
systems, Formal Methods in System Design 42 (1) (2013) 46–66.

Appendix A. Proofs

Theorem 1. Let N be an AltaRica node and H be its translation to HyDI. Then,
the ITS ITSN = 〈EN , ON , CN , IN , πN , TN〉 of N and the ITS ITSH〈EH , OH ,
CH , IH , πH , TH〉 of H are equal.

Proof. Recall that there exists a bidirectional mapping between each config-
uration c ∈ CN and each tuple 〈o, c1, . . . , cn〉 ∈ ON ×C1 × . . .×Cn. Also, there
exists a bidirectional mapping between each state q ∈ CH and an assignment µq
to the variables VH of the process of the HyDI network.

Thus, there exists a bijection ξ : CN → CH such that, given a state c ∈ CN ,
defined from the tuple 〈o, c1, . . . , cn〉 ∈ O × C1 × . . . × Cn, ξ(c) = q, where
q = µq(VH) and µq is the same assignment determined by 〈o, c1, . . . , cn〉. Let
ξ−1 : Q→ CN be the inverse mapping from QH to CN .

40

Now we have to prove that the transition relations of ITSN and ITSH are
equivalent. Formally, it means that 〈c, e, c′〉 ∈ TN iff 〈ξ(c), e, ξ(c′)〉 ∈ TH .

Let MH = 〈PARAMH , VH ,WH , INITH , TRANSH , INVARH〉 be the process as-
sociated to H . Thus, ITSH is the ITS associated to MH .

(⇒) We prove that if 〈s, ek, s′〉 ∈ TN , then 〈q, e, q′〉 ∈ TH , where ξ(s) = q
and ξ(s′) = q′. Let µs be the assignment to the variables of N corresponding to
〈o, c1, . . . , cn〉 = S. Since µs |= AN and µs′ |= AN , also, µq |= INVARH and
µq′ |= INVARH . By the definition of N , there exists a tuple of the synchronization

vectors 〈〈e0, . . . , en〉, v〉 ∈
⋃
v∈V Inst(v)× {v} such that s

〈e0,...,en〉,v→ s′. Consider
the following cases:

• if 〈〈e0, . . . , en〉, v〉 = 〈〈ε, . . . , ε〉, ε〉, then there exists a transition q
a→

q′, where a = 〈M1.EVENT = ε, . . . ,Mn.EVENT = ε〉 (Note that the silent
event ε cannot be used on arbitrary transitions inside a node, but it labels an
implicit self loop).

• Otherwise, let IdxWeak, IdxSync, Idxε be three disjoint sets of indexes such
that:

– IdxWeak ∪ IdxSync ∪ Idxε = {1, . . . , n}, IdxWeak ∩ IdxSync = ∅, IdxWeak ∩
Idxε = ∅ and IdxSync ∩ Idxε = ∅,

– for each k ∈ IdxWeak, e′j = ej? and ej ∈ Ej ,
– for each j ∈ IdxSync, e′j = ej and ej ∈ Ej ,
– for each l ∈ Idxε, e′l = ε,

then there exists a transition q a→ q′, where

a =
⋃

j∈IdxSync

Mj.EVENT = e1 ∪
⋃

k∈IdxWeak

Mk.EVENT = ek ∪
⋃
l∈Idxε

Mk.EVENT = ε.

Let 〈e′0, . . . , e′n〉 be the vector of synchronization v. For each 1 ≤ i ≤ n:

– ei = ε and e′i = ε. By the AltaRica semantics, we know that there are
no synchronization vectors v2 ∈ V such that 〈e′0, . . . , ei 6= ε, . . . , e′n〉
which can be fired from q. Moreover, the stuttering condition of HyDI
forces i.EVENT = ε, since i does not participate in the synchroniza-
tion.

41

– ei = e′i, ei 6= ε. First, 〈ci, ei, c′i〉 |= TH , thus Mi moves from ci to c′i on
ei. Moreover, for each j ∈ IdxSync, j 6= i, Mj moves on v.ej due to the
strong synchronization condition. For each k ∈ IdxWeak, k 6= i, by the
weak synchronization constraint we have that either ek = ε, and thus
Mk stutters, or Mk synchronizes on v.ek.

(⇐) We want to show that, for all q, q′ ∈ CH , for all e ∈ EH , if 〈q, e, q′〉 ∈ TH
then 〈ξ−1(q), e, ξ−1(q′)〉 ∈ TN . Let s = ξ−1(q) and s′ = ξ−1(q′). If 〈q, e, q′〉 ∈
TH , then, by definition of ITSH , 〈q, e, q′〉 |= TRANSH . In particular, e is an
assignment to all event variables EVENTM of the processes inMH . We want to
show that there exists a corresponding 〈s, e′, s′〉 ∈ Tc. We can have three possible
forms of e. 1) e = 〈S, . . . , S〉; by definition of the AltaRica node, synchronization
instance, and the ITS associated to the node, we have that e ∈ VN , e ∈ Inst(e),
and e ∈ TC and trivially 〈s, e, s′〉 ∈ TB. 2) e = 〈ε, . . . , ei, . . . , ε〉 and ei does not
occur in VN ; by definition of the ITS associated to an AltaRica node, we have that
〈s, e, s′〉 ∈ Tc and trivially 〈s, e, s′〉 ∈ TB. 3) e = v.ec with ec ∈ Inst(v) for some
v ∈ VN ; by definition of the ITS associated to an AltaRica node, we have that
〈s, 〈ec, v〉, s′〉 ∈ Tc; if v is a strong sync then trivially 〈s, e, s′〉 ∈ TB; if instead v
is weak, since 〈q, e, q′〉 |= TRANSH , we are guaranteed that ei = S only if q does
not satisfy the guard of the weak synchronization, and therefore e is the greatest
synchronization among the synchronization instances of v; thus, 〈s, e, s′〉 ∈ TB.
Thus there exists a corresponding transition in TN .

This concludes our proof.
�

42

	Introduction
	Related Work
	The AltaRica language
	The HyDI language
	Translation from AltaRica to HyDI
	Overview
	Flattening of the hierarchy
	Translation of variables and assertions constraints
	Translation of priorities and synchronization constraints

	Formal Properties of the Translation
	Background
	The semantics of AltaRica
	Syntax
	Semantics

	The semantics of HyDI
	Syntax
	Semantics

	Translation
	Flattening of the AltaRica hierarchy
	Translation from a flattened AltaRica node to a HyDI network

	Correctness

	Tool Integration and Functionalities
	The NuSMV/OCAS plugin
	Functionalities

	Experimental Evaluation
	Validation of the translation
	Verification and safety assessment on industrial case studies

	Conclusions and Future Work
	Proofs

