
Automated Analysis of Reliability Architectures

Marco Bozzano, Alessandro Cimatti and Cristian Mattarei
Fondazione Bruno Kessler

Trento, Italy
{bozzano, cimatti, mattarei}@fbk.eu

Abstract—The development of complex and critical systems
calls for a rigorous and thorough evaluation of reliability aspects.
Over the years, several methodologies have been introduced in
order to aid the verification and analysis of such systems. Despite
this fact, current technologies are still limited to specific architec-
tures, without providing a generic evaluation of redundant system
definitions.

In this paper we present a novel approach able to assess
the reliability of an arbitrary combinatorial redundant system.
We rely on an expressive modeling language to represent a wide
class of architectural solutions to be assessed. On such models,
we provide a portfolio of automatic analysis techniques: we can
produce a fault tree, that represents the conditions under which
the system fails to produce a correct output; based on it, we
can provide a function over the components reliability, which
represents the failure probability of the system.

At its core, the approach relies on the logical formalism
of equality and uninterpreted functions; it relies on automated
reasoning techniques, in particular Satisfiability Modulo Theories
decision procedures, to achieve efficiency.

We carried out an extensive experimental evaluation of the
proposed approach on a wide class of multi-stage redundant
systems. On the one hand, we are able to automatically obtain
all the results that are manually obtained in [1]; on the other, we
provide results for a much wider class of architectures, including
the cases of non-uniform probabilities and of two voters per stage.

Keywords—safety assessment, reliability architectures, formal
verification, fault tree analysis

I. INTRODUCTION

Architectures based on redundancy are used pervasively
in the design of high-dependability systems. In many cases,
basic patterns (such as Triple Module Redundancy) can be
composed into stages. An early example of this approach is
the Saturn Launch Vehicle Digital Computer described in [2].
Many configurations are possible, that may be more or less
preferable, depending on the reliability of the components, and
on cost factors of various nature [3].

In order to support the design, is thus important to provide
techniques to measure the characteristics of a given selection,
or even more importantly, the exploration of various architec-
tural choices in the cost-reliability space.

An example of such analysis is the comprehensive quan-
tification of the space of architectures provided in [1]. A multi-
stage TMR is considered, including the ones used in [2], and
the optimal solutions are identified, based on the reliability of
the voting and computing modules. The results in [1], however,
rely on a substantial amount of manual activity, carried out

with “paper-and-pencil” techniques, and are limited by sub-
stantially simplifying hypotheses (e.g. that all the computing
modules have the same failure probability).

In this paper, we propose a novel analysis flow, that
allows to assess the reliability of architectures for redundancy,
by means of automated techniques for model-based safety
assessment (MBSA). MBSA provides for a rich modeling
framework, where a comprehensive set of architectural solu-
tions is described in an expressive formal logic of equality and
uninterpreted functions (EUF). The framework is supported by
automated analysis techniques, that allow for the construction
of Fault Trees, and for probabilistic computation. The backend
of the tool chain is based on a model checking engine,
a particular technique for formal verification. Our approach
has two key advantages. First, it is based on an expressive
modeling language, where it is possible to describe arbitrary
redundancy architectures. Second, the flow is fully automated,
and allows both to produce fault trees, and to obtain a closed
form representation for the reliability function.

The flow is experimentally evaluated in the same setting as
in [1], demonstrating clear advantages. On the one hand, we are
able to reproduce all the results in a fully automated manner.
On the other hand, we are able to significantly widen the
analysis: we analyze several configurations that are disregarded
in [1], and we assess the cases of non-uniform probabilities,
and of stages with multiple voters.

Related Work: The use of formal methods techniques
to analyze redundancy architectures is rather limited. In [4],
the formalism of Communicating Sequential Processes (CSP)
is used to model and prove the correctness of a single TMR
stage. The work is mostly manual, and does not include any
quantitative analysis. In [5], a module based on redundancy
is designed within the formalism of timed automata, and
analyzed using the Uppaal model checker. This work focussed
on the specific features of the design, and does not consider
multi-staged architectures.

Structure of the paper: This paper is organized as
follows. In Section II we provide some background on MBSA
and on the underlying tool support. In Section III we propose a
modeling framework for a class of architectures for reliability.
In Section IV we describe the automated analysis provided by
our approach. The experimental results are shown in Section V.
In Section VI we draw some conclusions and outline directions
for future work.

II. BACKGROUND

The complexity of safety-critical systems is continuously
increasing. Yet, the current state-of-the-practice is largely

characterized by manual approaches, which are error prone,
and may ultimately increase the costs of certification. This has
motivated, in recent years, a growing interest in techniques
for Model-Based Safety Assessment [6]. The perspective of
model-based safety assessment is to represent the system
by means of a formal model and perform safety analysis
(both for preliminary architecture and at system-level) using
formal verification techniques. The integration of model-based
techniques allows safety analysis to be more tractable in terms
of time consumption and costs. Such techniques must be able
to verify functional correctness and assess system behavior in
presence of faults [7], [8], [9].

At the core of model based safety assessment is on the
ability to exhaustively analyze the behaviours of dynamical
systems. Traditionally, dynamical systems are modeled as finite
state systems: their state can be represented by means of
assignments to a specified set of variables [10].

In symbolic model checking, they are represented by means
of Boolean logic, where Boolean variables are combined by
means of Boolean connectives (e.g. conjunction, disjunction,
negation). In this approach, sets of states are represented
by the Boolean formula corresponding to the characteris-
tic function of the set. The symbolic analyses of dynamic
systems, most notably symbolic model checking techniques
(e.g. [11], [12], [13]) rely on efficient ways to represent and
manipulate Boolean formulae, in particular Binary Decision
Diagrams [14], and, more recently, Boolean satisfiability (SAT)
solvers [15].

Techniques for safety assessment, such as the construc-
tion Fault Trees and and Failure Mode and Effects Analysis
(FMEA) tables, are automated by reduction to symbolic model
checking [9], [16], [17], [18], [19], [20], [21].

Boolean logic, however, is a rather limited representation,
and fails to represent many important classes of systems with
infinite state, including, for example, systems with continuous
evolution over time. This limitation has been lifted with
the advent of Satisfiability Modulo Theory (SMT) [22], an
extension of the SAT decision problem, where the formula
is not pure Boolean, but it is expressed in some background
theory.

The definition of an SMT problem, as in SAT, is a con-
junction of clauses where each clause can be either Boolean or
theory formulas. A theory that is commonly used in verification
of hybrid systems is the theory of Linear Arithmetic, where
logical variables with real values are used to represent. Other
theories include the arithmetic over integers and arrays (used
in software verification), and the theory of bit vectors (used in
hardware verification). On top of SMT solver there are many
different verification algorithms that can be used [23], [24],
[25], [26].

In the rest of this paper we will focus primarily on the
theory of Equality and Uninterpreted Functions (EUF), where
variables range over an unspecified domain, and function sym-
bols can be declared, but have no specific property, except for
the fact that they are functions, i.e. (x = y)→ (f(x) = f(y)).

From the application point of view, there are several
toolsets that are able to carry out verification based on
SMT [27], [28]. In this work we rely on NuSMV3, that is

a complete verification and validation framework for model
based analysis. NuSMV3 is based on an open source verifica-
tion engine [29], [30], that provides for BDD-based and SAT-
based finite state model checking. At its core, NuSMV3 uses the
SMT solver MathSAT [31], [32], that supports several theories
like linear arithmetic over reals and integers, difference logic,
bit vectors and uninterpreted functions and equalities.

In addition to verification functionalities, NuSMV3 also
provides complex capabilities to perform advanced analyses.
Among these, it is able to support Safety Assessment, in
particular, Fault Tree Analysis [20] and reliability evaluation.

III. MODELING ARCHITECTURES FOR RELIABILITY

In this section we discuss the modeling of reliability
architectures using formal models.

When developing safety critical systems, it is important to
evaluate the components and the architectures that are required
in order to guarantee the safety of the system (i.e. reach a given
reliability target). System design has to take into account such
analysis in order to minimize the failure probability in relation
to the displacement of the components.

Over the years, safety engineering evaluated different archi-
tectural patterns; one of the most important and studied [33],
[34], [1], [4], [35], [36], is the Triple Modular Redundancy
(TMR). The idea of TMR consists in triplicating a module that
is considered critical in order to guarantee a correct behavior
of the system. As shown in Figure 4a, the input is replicated
to each copy of the module M , and the output is provided
to a voter V whose role is to propagate the value that is in
accordance with the majority of M outputs.

The impact of a Triple Modular Redundancy approach is
to increase the reliability when compared with a single (faulty)
module. In other words, the main goal is to decrease as much as
possible the gap with respect to a perfect (faultless) component.
This concept drives the evaluation of redundant architectures.
In particular, as shown in Figure 1, the evaluation of a chain
of TMR (lower part) consists in comparing it with a sequence
of perfect modules (upper part), both receiving the same input,
and analyzing the differences on the outputs.

The structure represented in Figure 1 requires the definition
of both nominal (a.k.a. perfect) and extended modules. In
particular, the latter integrates both nominal and faulty be-
havior, using a notion of switching between the two possible
behaviors, as described in more detail below.

Typically, in this phase of system analysis, the functional
behavior of the components is still undefined. Despite this,
we need a formalism that allows reliability analysis to be
performed independently of the behavioral description. We
show that the formalism based on uninterpreted functions
covers this need, as it allows for an abstraction of the functional
behavior of the system. In particular, it is possible to define
the nominal and faulty behaviors with two different functions,
and integrate both functions in the behavior of the extended
components. The nominal behavior is the same for both the
faultless component and extended one, in order to guarantee
that they are consistent. Moreover, a faulty component can
be described by a behavior that is unconstrained, that is, it

V

≠? =

Fig. 1: Comparison TMRs and faultless modules

1MODULE extended component (nomina l funct ion , f a u l t , i npu t)
2
3 VAR
4 faul t mode : boolean ;
5
6 FUN
7 f a u l t y f u n c t i o n : rea l −> rea l ;
8
9 ASSIGN

10 i n i t (fault mode) := FALSE ;
11 next (fault mode) := f a u l t ;
12
13 DEFINE
14 output : =
15 case
16 (fault mode = TRUE) : f a u l t y f u n c t i o n (i npu t) ;
17 TRUE : nomina l func t ion (i npu t) ;
18 esac ;

Fig. 2: An example of extended module (SMV language)

can be modeled without putting any constraint over the faulty
function.

The formal model that describes the setting shown in
Figure 1 is defined using SMV language (the input language
of NuSMV3) extended with the support for uninterpreted
functions. Figure 2 presents the definition of the extended
components. More in detail, the extended component receives
three parameters: 1) nominal function: the behavior definition
in the nominal case; 2) fault: an environmental event that
specifies whether the fault has occurred; 3) input: the input
value (of type real). Within the definition of the extended
component we have: the variable fault mode that keeps track
of the current behavior (nominal or faulty), the definition of the
faulty function and the multiplexer (line 13 in Figure 2) that
implements switching between nominal and faulty behavior.

Figure 3 presents the definition of the extended voter. More
in detail, this component receives five parameters: 1) input 1,
input 2 and input 3: the input values (of type real); 2) fault:
an environmental event that specifies whether the fault has
occurred; 3) default: the default value provided when the voter
is not able to find a majority. In detail, the definition of the
extended voter is composed of: the variable fault mode that
keeps track of the current behavior (nominal or faulty), the
definition of the voter function and the invariant that expresses
its behavior, the definition of the faulty function and the
multiplexer (line 26 in Figure 3) that implements switching
between nominal and faulty behavior.

The modeling capabilities enabled by this encoding into

1MODULE voter 2 3 (input 1 , input 2 , input 3 , f a u l t , d e f a u l t)
2
3 VAR
4 faul t mode : boolean ;
5
6 FUN
7 v o t e r f u n c t i o n : rea l ∗ rea l ∗ rea l −> rea l ;
8 f a u l t y f u n c t i o n : rea l ∗ rea l ∗ rea l −> rea l ;
9

10 ASSIGN
11 i n i t (fault mode) := FALSE ;
12 next (fault mode) := f a u l t ;
13
14 INVAR
15 case
16 (input 1 = input 2) :
17 v o t e r f u n c t i o n (input 1 , input 2 , input 3) = input 1) ;
18 (input 1 = input 3) :
19 v o t e r f u n c t i o n (input 1 , input 2 , input 3) = input 1) ;
20 (input 2 = input 3) :
21 v o t e r f u n c t i o n (input 1 , input 2 , input 3) = input 2) ;
22 TRUE :
23 v o t e r f u n c t i o n (input 1 , input 2 , input 3) = d e f a u l t) ;
24 esac ;
25
26 DEFINE
27 output :=
28 case
29 (fault mode = TRUE) :
30 f a u l t y f u n c t i o n (input 1 , input 2 , input 3) ;
31 TRUE : v o t e r f u n c t i o n (input 1 , input 2 , input 3) ;
32 esac ;

Fig. 3: An example of extended voter module (SMV language)

SMV language, extended with the support for EUF theory, are
very broad and powerful, and permit modeling and analysis of
different architectural patterns. In this work we concentrate on
the definition of TMR structures with both one and two voters.
Specifically, we exemplify the capabilities of the techniques we
proposed, on the set of configurations shown in Figure 4. The
notation that we use to describe a specific configuration is in
the format [t1, t2, ..., tn], where each ti represents a TMR t of
case number i (see Figure 4). This notation is contextualized
on the number of voters and defines a TMR chain of length
n.

IV. AUTOMATED ANALYSIS

In this section we analyze in detail the techniques used to
carry out safety analysis. Moreover, we present some test cases,
that will be used to exemplify and evaluate our approach.

Fault Tree Analysis

Fault Tree Analysis (FTA) is a technique for reliability
and safety analysis based on the construction of a Fault Tree

(a) Case 0 (1v) (b) Case 1 (1v) (c) Case 2 (1v) (d) Case 3 (1v) (e) Case 4 (1v) (f) Case 5 (1v) (g) Case 6 (1v)

(h) Case 0 (2v) (i) Case 1 (2v) (j) Case 2 (2v) (k) Case 3 (2v) (l) Case 4 (2v) (m) Case 0 (3v)

Fig. 4: Triple Modular Redundancy (1, 2 and 3 voters per stage)

Diagram [37]. A Fault Tree is a representation of the possible
scenarios that allow an undesirable configuration, also called
Top Level Event (TLE), to be reached. A Fault Tree, as shown
in Figure 5, is characterized by four kinds of nodes:

• basic faults (circles, name starts with “F”): they are
the leaves of the tree and represent the faults of basic
components e.g. “the generator is broken” or “the switch
is stuck at open”;

• intermediate events (boxes “S1 fails” and “S2 fails”):
they represent an hazardous condition reached by a sub-
system;

• top level event (box “TLE”): represents an undesirable
configuration that is reachable by the system;

• logic gates (ANDs and ORs gates): they define the
relation between the nodes of the tree. Essentially they
allow the tree to be represented as a Boolean formula.

Figure 5 shows the generated Fault Tree, for a chain [0,1]
with 1 voter (i.e, a chain of two TMRs, the first being of
type 0, Figure 4a, and the second of type 1, Figure 4b) of
TMRs (compare Figures 1 and 4). In this case, the TLE
represents the inequality between TMRs and perfect modules.
The intermediate event “S1 fails” specifies that at least 2
outputs of stage 1 diverge from the nominal value, whereas
“S2 fails” represents, respectively, the same condition for stage
2.

Numerical reliability computation

Considering the set of Minimal Cut Sets (MCSs) of a fault
tree, represented in a BDD format, the computation of the
reliability can be performed with a breadth first search over
the BDD itself, and considering all paths that lead to the >
node. A BDD structure is composed of ITE Boolean nodes, and
the reliability can be computed by recursion over the nodes,

Fig. 5: Fault Tree, TMR 1 voter configuration [0,1]

as shown in 1.

P (n) =


Pf ∗ P (n1) +
(1− Pf) ∗ P (n2) n = ITE(f, n1, n2)
1 n = >
0 n = ⊥

(1)

Intuitively, the first condition in 1 expresses the ITE
concept from the theory of probability, assuming that events
are independent, with the positive occurrence of f represented
by Pf and, respectively, its negative occurrence with (1−Pf).
The remaining two are the base cases. Whenever we reach
the evaluation of a > node, the resulting probability is 1
(regardless of possible variables assignments). Evaluation of
a ⊥ node yields a probability of 0, as the corresponding
assignment does not cause the TLE.

Symbolic reliability computation

The techniques we have described for the numerical com-
putation of system reliability can be extended to carry out sup-
port symbolic evaluation, i.e. compute the reliability function
in analytical form. In particular, each parameter of this function
is a symbolic variable representing the failure probability of a
single component.

As an example, equation 2 represents the reliability func-
tion computed for the configuration [0,1]. This formula has
been obtained automatically by using symbolic computation
techniques based on equation 1.

Fsys(Fm, Fv) = (Fv) + (2 ∗ Fm ∗ Fv) + (6 ∗ F 2
m)+

− (16 ∗ F 4
m ∗ F 2

v)− (10 ∗ Fv ∗ F 2
m)− (4 ∗ F 6

m ∗ F 2
v)+

− (2 ∗ Fm ∗ F 2
v) + (4 ∗ F 2

m ∗ F 2
v) + (4 ∗ F 3

m ∗ F 2
v)+

+ (14 ∗ F 5
m ∗ F 2

v)− (4 ∗ F 3
m)− (9 ∗ F 4

m) + (25 ∗ Fv ∗ F 4
m)+

+ (12 ∗ F 5
m)− (26 ∗ Fv ∗ F 5

m)− (4 ∗ F 6
m) + (8 ∗ Fv ∗ F 6

m)
(2)

Computing the symbolic reliability function allows us to
compare different architectural configurations independently
of the specific values of failure probability. Moreover, the
generation of the parametric reliability function allows us to
evaluate different modules that implement the same architec-
ture. As an example, let us consider three different modules,
M1, M2 and M3, that provide the same capability in terms of
functional computation but using different implementations.
In this scenario, symbolic computation allows us to express
dependencies between failure probability of different modules.
For instance, a setting where the probability of failure of M1

(i.e. Pf (M1)) is equal to FM1, Pf (M2) = 7/8 ∗ FM1 and
Pf (M3) = 5/8 ∗ FM1, can be easily expressed in order to
evaluate the overall reliability. Equation 3 shows an example of
the generated reliability formula, where the failure probability
of M1 is k times the failure of other modules.

Fsys(Fm, Fv, k) = (Fv) + (2 ∗ Fm ∗ Fv) + (2 ∗ F 2
m)+

− (4 ∗ Fv ∗ F 2
m)− (4 ∗ F 4

m ∗ k2)− (4 ∗ F 6
m ∗ k2)+

− (2 ∗ Fm ∗ F 2
v)− (2 ∗ F 4

m ∗ F 2
v) + (2 ∗ F 2

m ∗ F 2
v)+

+ (2 ∗ F 3
m ∗ F 2

v) + (4 ∗ k ∗ F 2
m) + (8 ∗ F 5

m ∗ k2)+
− (16∗Fv ∗F 5

m ∗k2)− (10∗k ∗F 4
m ∗F 2

v)− (6∗Fv ∗k ∗F 2
m)+

− (4∗F 4
m ∗F 2

v ∗k2)− (4∗F 6
m ∗F 2

v ∗k2)+(2∗k ∗F 2
m ∗F 2

v)+
+ (2 ∗ k ∗F 3

m ∗F 2
v)+ (6 ∗ k ∗F 5

m ∗F 2
v)+ (8 ∗Fv ∗F 4

m ∗ k2)+
+ (8 ∗ Fv ∗ F 6

m ∗ k2) + (8 ∗ F 5
m ∗ F 2

v ∗ k2)− (4 ∗ k ∗ F 3
m)+

− (2 ∗ Fv ∗ F 3
m) + (2 ∗ Fv ∗ k ∗ F 3

m)− (F 4
m)− (4 ∗ k ∗ F 4

m)+
+ (3 ∗ Fv ∗ F 4

m) + (14 ∗ Fv ∗ k ∗ F 4
m) + (4 ∗ k ∗ F 5

m)+
− (10 ∗ Fv ∗ k ∗ F 5

m) (3)

Tool chain

In this work, we concentrate on generating artifacts that
enable the evaluation of the reliability properties that dis-
tinguish different system configurations. Such information is

intended to aid the safety engineer to evaluate the best system
architecture which is compatible with the design requirements.
This evaluation can be carried out by comparing the reliabil-
ity functions of different architectures, possibly varying the
reliability of each single component.

Our approach to generate reliability functions is supported
by the tool chain shown in Figure 6. As described in pre-
vious sections, our process starts with the definition of the
formal model of the system. Then, using the safety assess-
ment capabilities of NuSMV3 we generate the Fault Tree as
previously described. The reliability extractor is responsible for
computing the reliability functions; it is shown as a separate
entity in Figure 6 in order to have a clear view of the
process, however it is integrated in the SA-addon of NuSMV3.
Finally, a detailed analytical evaluation can be carried out using
specific numerical computation software tools, such as Octave
or Matlab. Note that the use of the reliability extractor makes
it possible to construct a library of reliability functions, for
specific architectures that are of interest.

NuSMV3
Model

FT
Reliability
Extractor

F(f1,f2,…,fn)

Octave/
Matlab

Charts

Fig. 6: Tool chain for reliability evaluation

V. EXPERIMENTAL EVALUATION

The setting for the experimental evaluation consists in
generalizing the chain of sequential TMR modules with 1
and 2 voters. The idea is to arbitrarily define an array of
TMR configurations that represents the patterns that have to
be cyclically applied. For each of these patterns we generate
the reliability function parameterized by Fm = (1−Rm) and
Fv = (1 − Rv), which represent the failure probability for
modules and voters. Moreover, the reliability functions are
generated in Matlab format and stored together in order to
provide a reliability function library of known architectural
patterns.

This setting allows us to easily compare the reliability of
architectures. For instance, considering the patterns described
in Table II, we can compare them together and generate the
chart shown in Figure 9a. This view highlights, for each pair
of values for Fm and Fv , the best configuration. Moreover,
this approach allows for the generation of very informative
artifacts. In particular, with our approach it is possible to
provide a 3-dimensional view of the comparison between
chains of TMR with 1 voter. This view is shown in Figure 7

and it allows for a clear interpretation of system reliability
when varying the probability of failure of each component.

Fig. 7: 3D view for 1 voter comparison

Currently, state-of-the-art approaches for reliability eval-
uation do not allow for a completely automated analysis.
In particular, current techniques are dedicated to specific
architectural patterns. Our approach differs from previous
techniques by proposing a completely automated process for
the evaluation of system reliability. In view of this fact, the
scalability of our techniques is not directly comparable to
previous works. However, considering the time spent during
the whole process, our approach is significantly more effective
than standard manual analysis.

Nevertheless, the performance on the generation of the
Fault Trees and the reliability functions for a chain of length 8
with 1 voter takes on average 90 seconds (with an Intel Xeon
E3-1270 at 3.40GHz). Moreover, these artifacts can be stored
without any loss of information, and then possibly re-used to
evaluate new architectural configurations. For what concerns
the evaluation and plotting of the results, using numerical tools
such as Octave or Matlab, the performances are dependent on
the range of values and the number of instances that have to
be generated. For instance, generating Figure 9a, with range
10−5 ∼ 10−2 for x and y axes and 400 instances, takes 115
seconds (with an Intel Core2Duo T7700 at 2.40GHz).

In the rest of this section we evaluate our approach on the
following design space: one voter vs two voters per stage, and
uniform vs non-uniform probability distribution. The analyses
are intended to provide an overview of the approach capability
both in terms of expressivity and usability.

One voter per stage, uniform distribution

The analysis of the TMR with 1 voter consists in evaluating
chains of length 8 with patterns of length 4. Moreover, we
explicitly added the configurations studied in [1] in order
to have a direct comparison with the previous results. The
outcome of this analysis is presented in Figure 9a where
each (colored) area expresses that a specific configuration
is better than the others in terms of system reliability. The
configurations in Figure 9a, explained in Table II, confirm the

results presented in previous work, and highlight the power of
our approach.

By analyzing the results, we see from Figure 9a that the
configurations that consider multiple outputs from the voter
(e.g. the configurations in Figure 4e, 4f and 4g) are not more
reliable than the others, for the considered reliability values.

One voter per stage, non-uniform distribution

As we described in Section IV, it is possible to relax the
assumption that all modules have the same failure probability.
In this way, it is possible to accommodate the trade-off between
cost and reliability (module with higher reliability may come
at the price of higher cost). In this scenario, we are able to
provide the evaluation of redundant systems characterized by
non-uniform failure probability for each module. Similarly to
the analysis for uniform probability, in Figure 9b and Table III,
we report the comparison between TMR with (7/8) ∗ Fm for
M1, where M1 is the left-side module for each configuration
in Figure 4. The results of this analysis show that, when the
module 1 has higher reliability with respect to the others, the
best configurations are the ones shown in Figures 4a, 4d and
4c. This result can be explained by the fact that M2 and M3

are less reliable than M1, and in this case the voter is more
effective on the modules that have lower reliability.

Two voters per stage, uniform distribution

Similarly to the analysis for 1 voter, we performed a
comparison between configurations that consider TMR with
2 voters. The results are reported in Figure 9c, with details in
Table IV. The results of the analysis is similar to the case with
1 voter. In particular, when the reliability of the voter increases
the configurations switch gradually from the one in Figure 4l
(moderate use of voters) to the one in Figure 4i (intensive use
of voters).

Two voters per stage, non-uniform distribution

The analysis on the reliability of TMR chains with 2 voters
and non-uniform probability considers the case when one voter
has higher reliability with respect to the other. In detail, we
analyze the case of (1/2)∗Fv for V1, where V1 is the left-side
voter for each configuration in Figure 4. The higher reliability
of the left-side voter imposes the use of configurations that
concentrate the computation on this part (left-side) of the
TMR, (in particular we are referring to the one shown in Figure
4h). When Rv decreases, the best configurations are the ones
that minimize the use of voters, and in particular the ones
shown in Figures 4j, 4k and 4l.

One voter vs. two voters per stage

An interesting view about the chains of TMR is the
comparison between 1 and 2 voters per stage. In particular,
we use the standard evaluation in the area of 10−5 ∼ 10−2

for x and y axes, as for previous analysis. The results of the
evaluation are presented in Figure 10a, and they are explained
in Table VI. In this case, we highlight the difference in the
order of magnitude of reliability between the two approaches.
In particular, Figure 10b shows in red the area where 1 voter
is better, and in blue the area where it is worse. The z axis

Identification Description Array of configurations
(a) standard 1 voter [0, 0, 0, 0, 0, 0] (1v)
(b) standard 3 voters [0, 0, 0, 0, 0, 0] (3v)
(c) 1 voter with 1 fanout [1, 2, 3, 1, 2, 3] (1v)
(d) 1 voter with 1 fanout [1, 2, 3, 3, 2, 1] (1v)
(e) 2 voters with 1 fanout [3, 4, 2, 3, 4, 2] (2v)
(f) no redundancy

TABLE I: Configurations for system reliability:
proportional evaluation

of this plot represents the value of the difference between two
sets of configurations. Analyzing such view, we can see that
the approach with 2 voters is clearly better when the reliability
of the module is reasonably lower than the reliability of the
voter. Differently, when the two reliabilities are comparable,
the difference between the approaches is negligible.

System unreliability, proportional evaluation

This analysis evaluates system reliability when varying the
ratio between Rv and Rm, with Rv fixed to 10−5. In this work
we propose the same evaluation introduced in [3] in order to
compare our automated approach with previous results. The
configurations with 1, 2 and 3 voters are described in detail in
Table I. The results of this analysis are reported in Figure 8,
where it is shown that the configuration with 3 voters performs
better than the others. Moreover, it can be noticed that the
standard 1 voter setting is an interesting choice only if the
reliability of the voter is not less than 102 ∗Rm.

System reliability, varying non-uniform probabilities

The evaluation of system reliability is clearly influenced
by the probability distribution of failures that characterizes
each single component. In view of this fact, we propose
an evaluation of system reliability by varying non-uniform
distributions for two specific settings. In detail, we analyze
the standard TMR chain with 1 voter, described in Table III
configuration (h), and one chain with 2 voters explained by
configuration (c) of Table V.

In the first case, we consider the probability of failure for
M1 as k∗Fm, with k varying from 1/2 to 2. Figure 11a shows
the results of this analysis. It is possible to notice that such
TMR configurations have an impact on system reliability only
when Fm is significantly bigger than Fv . In particular, the
probability of system failure is influenced only when Fm >
102 ∗ Fv .

Figure 11b shows the evaluation on the configuration with
2 voters. In this case, we consider the probability of failure for
V1 as k ∗ Fv , with k varying from 1/4 to 4. Differently from
previous analysis, the impact on the reliability of the system
is significant only when Fm < 10 ∗ Fv . This result can be
explained by the fact that, in this area, the reliability of the
voter is close to the reliability of the module.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel flow for the automated
analysis of architectures for reliability. The approach is based
on the use of uninterpreted functions, and allows to model
different architectural solutions without specific commitment

Fig. 8: System reliability: proportional evaluation

to the nature of the blocks being combined. The flow is
supported by a tool that provides for the automated generation
of the fault trees for the case where the redundancy fails, and
computes a closed form of the reliability function. We carried
out an extensive experimental evaluation of the approach: we
are able to automatically obtain all the results that are manually
obtained in [1], and we extend them to the cases of non-
uniform probabilities and of two voters per stage.

In the future, we plan to work along the following di-
rections. First, we will increase the scalability of the ap-
proach, by investigating various forms of symmetry breaking,
and compositional reasoning techniques based on predicate
abstraction [38]. Second, we will consider the analysis of
sequential systems, that may require the use of probabilistic
model checking of Markov decision processes [39]. Finally, we
will work to integrate within the framework a search procedure
for advanced synthesis of optimal configurations.

REFERENCES

[1] M. Hamamatsu, T. Tsuchiya, and T. Kikuno, “On the reliability of
cascaded tmr systems,” in Dependable Computing (PRDC), 2010 IEEE
16th Pacific Rim International Symposium on. IEEE, 2010, pp. 184–
190.

[2] I. B. M. Corporation, “Saturn v – launch vehicle digital computer:
Simplex models,” NASA, Technical Note NASA Part No. 50M35010,
Nov. 1964. [Online]. Available: http://ntrs.nasa.gov/archive/nasa/casi.
ntrs.nasa.gov/19730063841 1973063841.pdf

[3] S. Lee, J. il Jung, and I. Lee, “Voting structures for cascaded triple
modular redundant modules,” Ieice Electronic Express, vol. 4, no. 21,
pp. 657–664, 2007.

[4] T. Lanfang, T. Qingping, and L. Jianli, “Specification and verification
of the triple-modular redundancy fault tolerant system using csp,” in
DEPEND 2011, The Fourth International Conference on Dependability,
2011, pp. 14–17.

[5] M. Zhang, Z. Liu, C. Morisset, and A. Ravn, “Design and verification
of fault-tolerant components,” Methods, Models and Tools for Fault
Tolerance, pp. 57–84, 2009.

[6] A. Joshi, M. Whalen, and M. P. Heimdahl, “Modelbased safety analysis:
Final report,” Tech. Rep., 2005.

[7] M. Bozzano, A. Villafiorita, O. Åkerlund, P. Bieber, C. Bougnol,
E. Böde, M. Bretschneider, A. Cavallo, C. Castel, M. Cifaldi et al.,
“Esacs: an integrated methodology for design and safety analysis of
complex systems,” Proc. ESREL 2003, pp. 237–245, 2003.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730063841_1973063841.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730063841_1973063841.pdf

(a) 1 voter: uniform probability (b) 1 voter: non-uniform probability

(c) 2 voters: uniform probability (d) 2 voters: non-uniform probability

Fig. 9: Find best for 1 and 2 voters, uniform and non-uniform probability

Architecture color Array of configurations
(a) blue [1, 1, 1, 1, 1, 1, 1, 1]

(b) blue/lightblue [1, 1, 1, 1, 2, 3, 1, 2]
(c) lightblue [1, 2, 3, 1, 2, 3, 1, 2]

(d) green [3, 2, 1, 0, 3, 2, 1, 0]
(e) yellow [3, 0, 3, 0, 3, 0, 3, 0]
(f) orange [0, 0, 3, 0, 0, 0, 3, 0]

(g) red [0, 0, 0, 0, 0, 0, 0, 0]

TABLE II: Configurations for 1 voters
uniform probability

Architecture color Array of configurations
(a) blue [3, 3, 3, 3, 3, 3, 3, 3]

(b) blue/lightblue [3, 3, 3, 2, 3, 3, 3, 2]
(c) lightblue [3, 2, 3, 1, 3, 2, 3, 1]

(d) green [3, 1, 3, 2, 3, 1, 3, 2]
(e) yellow [3, 2, 1, 0, 3, 2, 1, 0]
(f) orange [3, 0, 3, 0, 3, 0, 3, 0]

(g) red [0, 0, 3, 0, 0, 0, 3, 0]
(h) darkred [0, 0, 0, 0, 0, 0, 0, 0]

TABLE III: Configurations for 1 voter
non-uniform probability

Architecture color Array of configurations
(a) blue [4, 4, 4, 4, 4, 4, 4, 4]

(b) lightblue [4, 4, 3, 2, 4, 4, 3, 2]
(c) green [4, 3, 2, 3, 4, 3, 2, 3]
(d) yellow [1, 1, 1, 4, 1, 1, 1, 4]
(e) orange [1, 1, 1, 1, 1, 1, 1, 1]

TABLE IV: Configurations for 2 voters
uniform probability

Architecture color Array of configurations
(a) blue [4, 4, 4, 4, 4, 4, 4, 4]

(b) lightblue [3, 3, 2, 3, 3, 2, 3, 3]
(c) green [2, 3, 4, 2, 3, 4, 2, 3]
(d) yellow [0, 4, 0, 0, 4, 0, 0, 4]
(e) orange [0, 0, 0, 0, 0, 0, 0, 0]

TABLE V: Configurations for 2 voter
non-uniform probability

(a) 1 and 2 voters comparison (b) 1 voter vs 2 voters (blue means 2v is better)

Fig. 10: 1 voter vs 2 voters

(a) Varying Fm for M1 (b) Varying Fv for V1

Fig. 11: System reliability when varying non-uniform probability

Architecture color Array of configurations
(a) blue [1, 1, 1, 1, 1, 1, 1, 1] (1v)

(b) lightblue [1, 1, 1, 1, 2, 3, 1, 2] (1v)
(c) green [4, 3, 2, 3, 4, 3, 2, 3] (2v)
(d) yellow [1, 1, 1, 4, 1, 1, 1, 4] (2v)
(e) orange [0, 0, 0, 0, 0, 0, 0, 0] (1v)

TABLE VI: Configurations for 1 voter vs. 2 voters

[8] O. Akerlund, P. Bieber, E. Boede, M. Bozzano, M. Bretschneider,
C. Castel, A. Cavallo, M. Cifaldi, J. Gauthier, A. Griffault et al., “Isaac,
a framework for integrated safety analysis of functional, geometrical and
human aspects,” Proc. ERTS, vol. 2006, 2006.

[9] M. Bozzano and A. Villafiorita, Design and Safety Assessment of
Critical Systems. CRC Press (Taylor and Francis), an Auerbach Book,
2010.

[10] G. J. Holzmann, “The model checker spin,” Software Engineering, IEEE

Transactions on, vol. 23, no. 5, pp. 279–295, 1997.

[11] K. McMillan, Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[12] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

[13] K. L. McMillan, “Interpolation and sat-based model checking,” in CAV,
ser. Lecture Notes in Computer Science, W. A. H. Jr. and F. Somenzi,
Eds., vol. 2725. Springer, 2003, pp. 1–13.

[14] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677–691, 1986.

[15] J. P. M. Silva, I. Lynce, and S. Malik, “Conflict-driven clause learning
sat solvers,” in Handbook of Satisfiability, ser. Frontiers in Artificial
Intelligence and Applications, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Eds. IOS Press, 2009, vol. 185, pp. 131–153.

[16] The FSAP/NuSMV-SA platform. http://es.fbk.eu/tools/FSAP.

[17] M. Bozzano and A. Villafiorita, “The FSAP/NuSMV-SA Safety Anal-
ysis Platform,” Software Tools for Technology Transfer, vol. 9, no. 1,
pp. 5–24, 2007.

[18] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and
M. Roveri, “Safety, dependability, and performance analysis of extended
AADL models,” The Computer Journal, vol. doi: 10.1093/com, March
2010.

[19] M. Bozzano and A. Villafiorita, “The fsap/nusmv-sa safety analysis
platform,” STTT, vol. 9, no. 1, pp. 5–24, 2007.

[20] M. Bozzano, A. Cimatti, and F. Tapparo, “Symbolic fault tree analysis
for reactive systems,” in ATVA, ser. Lecture Notes in Computer Science,
K. S. Namjoshi, T. Yoneda, T. Higashino, and Y. Okamura, Eds., vol.
4762. Springer, 2007, pp. 162–176.

[21] M. Bozzano, A. Cimatti, O. Lisagor, C. Mattarei, S. Mover, M. Roveri,
and S. Tonetta, “Symbolic model checking and safety assessment of
altarica models,” ECEASST, vol. 46, 2011.

[22] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, ser. Frontiers in Artifi-
cial Intelligence and Applications, A. Biere, M. Heule, H. van Maaren,
and T. Walsh, Eds. IOS Press, 2009, vol. 185, pp. 825–885.

[23] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby, N. Shankar, M. Sorea,
and A. Tiwari, “Sal 2,” in CAV, ser. Lecture Notes in Computer Science,
R. Alur and D. Peled, Eds., vol. 3114. Springer, 2004, pp. 496–500.

[24] S. Tonetta, “Abstract model checking without computing the abstrac-
tion,” in FM, ser. Lecture Notes in Computer Science, A. Cavalcanti
and D. Dams, Eds., vol. 5850. Springer, 2009, pp. 89–105.

[25] A. Cimatti, S. Mover, and S. Tonetta, “Smt-based verification of hybrid
systems,” in AAAI, J. Hoffmann and B. Selman, Eds. AAAI Press,
2012.

[26] ——, “Smt-based scenario verification for hybrid systems,” Formal
Methods in System Design, vol. 42, no. 1, pp. 46–66, 2013.

[27] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H. Rueß,
J. Rushby, V. Rusu, H. Saıdi, N. Shankar et al., “An overview of sal,”
in Proceedings of the 5th NASA Langley Formal Methods Workshop,
2000.

[28] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 1, no. 3-4, pp. 209–236, 2007.

[29] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV : a new
symbolic model checker,” International Journal on Software Tools for
Technology Transfer (STTT), vol. 2, no. 4, pp. 410–425, Mar. 2000.

[30] The NuSMV model checker. http://nusmv.fbk.eu.

[31] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum,
S. Schulz, and R. Sebastiani, “Mathsat: Tight Integration of SAT and
Mathematical Decision Procedures,” Journal of Automated Reasoning,
vol. 35, pp. 265–293, 2005.

[32] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
mathsat5 smt solver,” in TACAS, ser. Lecture Notes in Computer
Science, N. Piterman and S. A. Smolka, Eds., vol. 7795. Springer,
2013, pp. 93–107.

[33] J. A. Abraham and D. P. Siewiorek, “An algorithm for the accurate reli-
ability evaluation of triple modular redundancy networks,” Computers,
IEEE Transactions on, vol. 100, no. 7, pp. 682–692, 1974.

[34] D. D. Thaker, R. Amirtharajah, F. Impens, I. Chuang, and F. T. Chong,
“Recursive tmr: Scaling fault tolerance in the nanoscale era,” Design &
Test of Computers, IEEE, vol. 22, no. 4, pp. 298–305, 2005.

[35] J. M. Johnson and M. J. Wirthlin, “Voter insertion algorithms for fpga
designs using triple modular redundancy,” in Proceedings of the 18th
annual ACM/SIGDA international symposium on Field programmable
gate arrays. ACM, 2010, pp. 249–258.

[36] T. Anderson and P. A. Lee, Fault tolerance, principles and practice.
Prentice/Hall International, 1981.

[37] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, Fault Tree
Handbook. Nuclear Regulatory Commission, 1981, no. NUREG-0492.

[38] A. Cimatti, J. Dubrovin, T. A. Junttila, and M. Roveri, “Structure-aware
computation of predicate abstraction,” in FMCAD. IEEE, 2009, pp.
9–16.

[39] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and
M. Roveri, “Safety, dependability and performance analysis of extended
aadl models,” Comput. J., vol. 54, no. 5, pp. 754–775, 2011.

[40] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability, ser. Frontiers in Artificial Intelligence and Applications,
vol. 185. IOS Press, 2009.

	Introduction
	Background
	Modeling Architectures for Reliability
	Automated Analysis
	Experimental evaluation
	Conclusions and Future Work
	References

