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Abstract. The overall safety of critical systems is often based on the
use of redundant architectural patterns, such as Triple Modular Redun-
dancy. Certification procedures in various application domains require
an explicit evaluation of the reliability, and the production of various
artifacts. Particularly interesting are Fault Trees (FT), that represent in
a compact form all the combinations of (basic) faults that are required
to cause a (system-level) failure. Yet, such activities are essentially based
on manual analysis, and are thus time consuming and error prone.

A recently proposed approach opens the way to the automated analysis of
reliability architectures. The approach is based on the use of Satisfiability
Modulo Theories (SMT), using the theory of Equality and Uninterpreted
Functions (EUF) to represent block diagrams. Within this framework,
the construction of FTs is based on the existential quantification of an
EUF formula. Unfortunately, the off-the-shelf application of available
techniques, based on the translation into an AllSMT problem, suffers
from severe scalability issues.

In this paper, we propose a compositional method to solve this problem,
based on the use of predicate abstraction. We prove that our method is
sound and complete for a wide class of system architectures. The pre-
sented approach greatly improves the overall scalability with respect to
the monolithic case, obtaining speed-ups of various orders of magnitude.
In practice, this approach allows for the verification of architectures of
realistic systems.

Keywords: Formal Verification,Reliability Architectures,Fault Tree Anal-
ysis,Satisfiability Modulo Theory,Redundant Systems

1 Introduction

Redundancy is a well known solution used in the design of critical system. In
order to increase the dependability of a system, components carrying out impor-
tant functions are replicated, and their effects combined by means of dedicated
modules such as voters. A typical schema is Triple Module Redundancy (TMR)
where three components are connected by a voter. This solution can be instan-
tiated multiple times within the same system, in cascading stages organized in
different structures [3,37,28].



The reliability analysis for such architectures is based on the construction of
so-called Fault Trees [45]. A Fault Tree (FT) identifies all the configurations of
faults that can lead to an undesired event (e.g., loss of a system function). The
construction of FT’s from a model are in general not carried out automatically,
and are thus costly, tedious and error prone. A recent exception is the work
in [13], where the problem of analyzing reliability architectures is cast in the
framework of Satisfiability Modulo Theories (SMT) [6]. Functional blocks are
represented in the theory of Equality and Uninterpreted Functions (EUF) as
uninterpreted functions. Redundancy is modeled by the repetition of the same
function block, combined with blocks representing the voting mechanisms. The
possible occurrence of faults is modeled by the introduction of Boolean fault
variables. Within this framework, FTs are directly generated by the collection of
values to the fault variables that make an EUF formula satisfiable. In fact, the
construction of such FTs is a variation of the AllSMT problem [35] where the
assignments to the fault variables are required to be minimal with respect to set
inclusion. Unfortunately, the techniques based on [35] can be seen as a monolithic
enumeration of the disjucts of the DNF of the resulting formula, are are often
subject to a blow up. This prevents the construction of FT (and ultimately the
reliability analysis) for systems of realistic size.

In this paper, we propose a new method for the compositional computation
of FTs for the analysis of redundancy architectures. The key technical insight is
the use of predicate abstraction to partition the construction of FT. More specif-
ically, the computation of the FT for a DAG of concrete components proceeds
in two steps: first, we combine the abstraction of the individual components un-
der a suitable set of predicates, carrying out an SMT-based quantification, thus
obtaining a pure Boolean model; then, we compute the FT for such model using
BDD-based projection techniques [14]. We prove that the approach is sound, i.e.
the FTs computed on the abstract system are the same as the ones computed
directly on the original, concrete system.

The approach was implemented within the NuSMV3 system, on top of the
MathSAT5 [21] SMT solver, and we carried also out an experimental evaluation
to test the scalability. On small-sized examples, where the monolithic approach
requires already a significant computation time, the new method performs orders
of magnitude better. Even more important, the new method scales dramatically
better, and is able to generate fault trees with hundreds of blocks in less than one
minute. The increased capacity allowed us to analyze some classical architectures
(e.g. [3,46,37,28]) that are out of reach for the previous technique [13].

The paper is structured as follows. In Section 2 we discuss some relevant
related work. In Section 3 we present some logical background. In Section 4
we define the problem, and discuss the limitations of the previous solutions. In
Section 5 we present our approach. In Section 6 we formally define the approach
and prove its soundness. In Section 7 we describe the experimental evaluation.
In Section 8 we draw some conclusions, and discuss future work.



2 Related Work

In recent years, there has been a growing interest in techniques for model-based
safety assessment [33]. The perspective of model-based safety assessment is to
represent the system by means of a formal model and perform safety analysis
(both for preliminary architecture and at system-level) using formal verification
techniques. The integration of model-based techniques allows safety analysis to
be more tractable in terms of time consumption and costs. Such techniques must
be able to verify functional correctness and assess system behavior in presence
of faults [17,4,11,16].

A key difference with respect to our approach is that these techniques focus
on the analysis of the behavior of dynamical systems, whereas our approach
aims at evaluating characteristics of redundancy architectures, independently of
components’ behavior. Our approach builds upon the work in [13], which is based
on the calculus of Equality and Uninterpreted Functions (EUF), and makes use
of Satisfiability Modulo Theory (SMT) techniques for verification [7,27].

The techniques based on Markov Decision Process and Probabilistic Petri
Nets [34,29,44,19,40] are widely used in industry for the quantitative evaluation
and reliability analysis. However, such approaches are not able to provide a
uniform and completely automated process, and in fact, the link between the
reliability evaluation and the qualitative safety assessment analysis is performed
manually. Thus, this is a key difference between the approach proposed in [13]
and the current techniques for the analysis of reliability architectures.

In this work we rely on NuSMV3, that is a complete verification and valida-
tion framework for model based analysis. NuSMV3 is based on an open source
verification engine [20], that supports BDD-based and SAT-based finite state
model checking. At its core, NuSMV3 uses the SMT solver MathSAT [10,21],
that supports several theories like linear arithmetic over reals and integers, dif-
ference logic, bit vectors, uninterpreted functions, and equality. In addition to
verification, NuSMV3 also provides complex capabilities to perform safety as-
sessment, in particular, FTA [14] and reliability evaluation.

3 Background

Traditionally, dynamical systems are modeled as finite state systems: their state
can be represented by means of assignments to a specified set of variables [30].
In symbolic model checking, they are represented by means of Boolean logic,
where (Boolean) variables are combined together via Boolean connectives (e.g.
conjunction, disjunction, negation). In this approach, sets of states are repre-
sented by the Boolean formula corresponding to the characteristic function of
the set. The symbolic analyses of dynamic systems, most notably symbolic model
checking techniques (e.g. [39,8,38]) rely on efficient ways to represent and manip-
ulate Boolean formulae, in particular Binary Decision Diagrams [18], and, more
recently, Boolean satisfiability (SAT) solvers [41].

Boolean logic, however, is a rather limited representation, and fails to repre-
sent many important classes of systems. This limitation has been lifted with the



advent of Satisfiability Modulo Theory (SMT) [6], where the formula is not pure
Boolean, but it is expressed in some background theory such as Real and Integer
Arithmetic (LA(Q)/LA(Z)), Difference Logic (DL), and Bit Vectors (BV). On
top of SMT solver there are many different verification algorithms that can be
used [25,43,22,23]. In this paper we will focus primarily on the theory of Equality
and Uninterpreted Functions (EUF), where variables range over an unspecified
domain, and function symbols can be declared, but have no specific property,
except for the fact that they are functions, i.e. (x = y)→ (f(x) = f(y)). More-
over, we use predicate abstraction in order to approximate a concrete system
using a set of formulas (predicates). Our approach makes use of an AllSMT pro-
cedure [35] that efficiently implements predicate abstraction by enumerating all
the satisfying assignments over the set of predicates using an SMT solver.

The target of our approach is to improve the analysis of reliability archi-
tectures, and in particular the techniques for Model-Based Safety Assessment
such as the construction of Fault Trees and Failure Mode and Effects Analysis
(FMEA) tables, which can be performed automatically by reduction to symbolic
model checking [16,11,15,14,12].

4 The problem: analysis of reliability architectures

The evaluation of architectural patterns is an essential ingredient for the de-
velopment of safety critical system, due to the fact that such systems have to
guarantee an high reliability. When a specific component is essential to guarantee
correct and safe operation of the system, a standard practice in safety engineer-
ing is to encapsulate it in a redundant architectural pattern. This practice aims
at increasing the reliability of the redunded component.

One of the most well-known architectural pattern is the Triple Modular Re-
dundancy (TMR) architecture [3,5,26,42,31]. It consists in triplicating the mod-
ule that is critical for the reliability of the system, and feeding one voter with
their outputs. Specifically, considering each redundant module as a functional
component, receiving an input and providing an output, the voter returns the
value computed by the majority of the redunded modules. This approach allows
us to varying, and hopefully increase, the reliability of the system, which de-
pends on the reliability of each voter and each component, in addition to the
displacement and connections between them. The analysis of reliability architec-
tures, in general, is performed manually, due to the lack of specific techniques
addressing both modeling and verification. The manual approach is supported
by several specific algorithms [28,36] that can aid the verification and analysis
of reliability of TMR chains. However, such approaches cannot be generalized in
order to cover a full set of architectural patterns.

Recent studies on the verification of architectural patterns [13] aim at au-
tomating the analysis of reliability architectures. The idea proposed in [13] con-
sists in defining the behavior of components using uninterpreted functions. Such
formalism has the capability to describe the functional behavior of the compo-
nents without giving any details of their implementation. Uninterpreted func-
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Fig. 1: Network of combinatorial components [3]
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Fig. 2: Modular redundancy examples

tions have no specific properties, except that they have to provide the same
outputs when given the same inputs. Moreover, faulty behavior can be modeled
simply by leaving the output of a faulty component unconstrained.

5 The approach

In this work we concentrate on the equivalence checking between nominal and
faulty systems with redundant modules. The idea is to provide the same inputs
to both structures and evaluate under which conditions the outputs are different.
This evaluation relies on Model-Based Fault Tree Analysis [14], which consists
of generating all the faults configurations such that it is possible to reach an
undesirable behavior (a.k.a. Top Level Event). A faults configuration, also called
cut-set, is minimal if it is not possible to reach the TLE by removing a fault from
this set, and in this work we concentrate on the minimal cut-sets generation.

Figure 1 shows a graphical representation of the nominal (1a) and redundant
(1b) configurations of the network example introduced in [3]. Each redundant
module, as shown in Figure 2, is then extended to take into account faults,
namely by placing the nominal (the M and V modules) and faulty behaviors
(the light red modules) in parallel. Figure 2 illustrates some examples of this
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Fig. 3: Comparison TMRs and faultless modules

extension, for different architectures. The selection between nominal and faulty
behaviors is realized by a multiplexer that receives a fault event as input. Finally,
Figure 3 illustrates our approach to system equivalence, in the case of linear
architectures. It consists in equating the output of the nominal architecture with
the output of the extended redundant architecture. The same approach can be
generalized to the case of Tree or DAG structures, their evaluation being similar
to the linear ones.

In this work, we refer to modules that integrate both nominal and redundant
system definition for each stage. This approach allows us to keep aligned (w.r.t
architectural patterns) nominal and redundant systems, by construction. The
idea is to define each module, composed of nominal and redundant behavior,
using an abstract definition that preserves their behavior, while permitting a
significant improvement of the performances of the routines that analyze them.

The predicate abstraction is defined for each individual redundant compo-
nent, and formalized in Equation 1. Specifically, given a component defined as an
SMT formula ΓB∪D(I,O, F ) over input and output ports, and faults events, we
want to define a Boolean formula ΨB(AI , AO, F ) over input and output predicates
(defined as φI and φO, then bound to AI and AO) by performing a quantifier
elimination over concrete input and output ports (the sets I and O), and fault
events. The relation between these predicates and concrete ports is defined by

ΨB(AI , AO, F ) = ∃I,O.(ΓB∪D(I,O, F )∧
AI ⇐⇒ φI(I) ∧AO ⇐⇒ φO(O))

(1)

From the Boolean formula representing an abstract component, it is possible
to generate an SMV module that encodes it. On top of this, we can encode a
network composed of individual abstract components. In Section 6 we show that
this network is equivalent to the abstraction of a network composed of concrete
components, and use this result for FTA.

Given that abstract formulas are Boolean, we can analyze them using a BDD-
based engine. Moreover, the network definition that we introduced in this paper



allows for the generation of an optimal variable ordering that guarantees high
verification performances. Equation 2 describes a system as the composition of
different modules; in particular, it represents the configuration shown in Figure
1. This notation, similar to the relational language introduced in [32], consists
of defining two operators: sequential composition (.) and parallel composition
(|). The former relates components that are connected in a sequential fashion,
linking outputs of the first component with inputs of the second one. Paral-
lel composition, on the other hand, juxtaposes the set of ports from different
components, which run in parallel.

(M1|M2) . (D|D) . (M3|M4|M5) . M6 (2)

The framework described in this paper enables the definition of any tree-
or DAG-shaped structure. Three special combinatorial components can be used
to connect inputs and outputs of different components, in order to implement:
duplication of values (module D), simple propagation of input values (I module,
a.k.a. identity) and arbitrary reconfiguration of signals (R module). For instance,
in Equation 2 we use D modules in order to duplicate outputs of the M1 and
M2 components.

6 Abstraction

In this section we formally define our approach, based on predicate abstraction,
and we show that it allows for an efficiently generation of FTs. We concentrate
on networks of combinatorial components used to define TMR architectures. A
combinatorial component, according to Definition 1, is a system with input and
output ports, a set of faults signals and a formula. Intuitively, such components
do not have time evolution (i.e., they are combinatorial) and the values of the
output ports are computed only over current inputs and faults.

Definition 1 (Combinatorial component). A combinatorial component is a
tuple S = 〈P , F, π〉, where:

– P = PO‖PI are the terms representing vector ports, sequentially split into
input and output (i.e. the symbol ‖ defines vectors concatenation). Each port
can have Boolean (B) or Data (D) type, while faults are only Boolean;

– F is the set of faults events;
– π(PI ,PO, F ) is an SMT formula over ports and faults, where each term

belongs to B or D.

We also define two special combinatorial components whose purpose is to formal-
ize the abstraction. Specifically, the abstractor component (compare Definition
2) is used to translate a set of concrete values into their abstract counterpart,
whereas the concretizer component (Definition 3) generates instances of concrete
values satisfying the input predicates.

Definition 2 (Abstractor combinatorial component). A combinatorial com-
ponent A = 〈P , F, α〉 is called abstractor if:



– F = ∅;
– P = PI‖PO;
– PI is the vector of input ports belonging to D;
– PO is the vector of output ports belonging to B;
– α(PI ,PO, ∅) is an SMT formula over input and output ports.

Definition 3 (Concretizer combinatorial component). A combinatorial
component C = 〈P , F, γ〉 is called concretizer if:

– F = ∅;
– P = PI‖PO;
– PI is the vector of input ports belonging to B;
– PO is the vector of output ports belonging to D;
– γ(PI ,PO, ∅) is an SMT formula over input and output ports.

Definition 4 formalizes the sequential composition of two components S′ and
S′′. The idea is to connect the output ports of S′ to the input ports of S′′.
The resulting component S has the same input ports as S′, the same output
ports of S′′ and the union of the faults of S′ and S′′. Concretizer and abstractor
components allow us to express the abstraction of module S as the sequential
composition C . S . A.

Definition 4 (Sequential composition). Given two combinatorial compo-
nents S′ = 〈P ′, F ′, π′〉 and S′′ = 〈P ′′, F ′′, π′′〉, such that |P ′

O| = |P ′′
I |, the

sequential composition S = 〈P , F, π〉, denoted S = S′ . S′′ is defined by:

– PI = P ′
I ;

– PO = P ′′
O ;

– F = F ′ ∪ F ′′;
– π(PI ,PO, F ) = ∃P ′

O,P
′′
I .π

′(P ′
I ,P

′
O, F

′)∧
π′′(P ′′

I ,P
′′
O , F

′′)∧ P ′
O = P ′′

I .

Similarly, parallel composition of two components is defined as follows.

Definition 5 (Parallel composition). Given two combinatorial components
S′ = 〈P ′, F ′, π′〉 and S′′ = 〈P ′′, F ′′, π′′〉, such that F ′ ∩ F ′′ = ∅, the parallel
composition S = 〈P , F, π〉, denoted S = S′|S′′, is defined by:

– PI = P ′
I‖P ′′

I ;
– PO = P ′

O‖P ′′
O ;

– F = F ′ ∪ F ′′;
– π(PI ,PO, F ) = π′(P ′

I ,P
′
O, F

′)∧ π′′(P ′′
I ,P

′′
O , F

′′).

Definition 6 expresses the equivalence between combinatorial components.
Intuitively, two combinatorial components are equivalent if their relational for-
mulas have the same value for each assignment to input and output ports, and
faults.



Definition 6 (System equivalence). Given two combinatorial components
S′ = 〈P ′, F ′, π′〉 and S′′ = 〈P ′′, F ′′, π′′〉, such that F ′ = F ′′ and P ′ = P ′′, they
are called system equivalent, denoted S′ ≡ S′′, if and only if
∀M = 〈pI1, ..., pIn, pO1, ..., pOm, f1, ..., fIk〉 : π′(M) ⇐⇒ π′′(M).

In this work we concentrate on Fault Tree Analysis [45], and specifically on
the generation of the Minimal Cut-Sets (MCSs) as formally defined in 8. This
analysis provides a subset of the cut-sets (see Definition 7), which represents all
fault configurations such that there exists an assignment to input and output
ports making a specific event, called top level event (TLE), true. In this case, we
consider to have two different systems, nominal and redundant, and the TLE is
the predicate representing the difference between the outputs, by providing to
them the same input.

Definition 7 (Cut-Sets). Given a combinatorial component S = 〈P , F, π〉 and
a predicate T (PO), called Top Level Event; the set of cut-sets, denoted CS, is
defined as follows:

CS(S, T ) = {f ∈ 2F |∃pI ∈ 2PI , pO ∈ 2PO .π(pI , pO, f) ∧ T (pO) = >}
A minimal cut-set is defined as follows, by keeping only cut-sets that are minimal
fault configurations.

Definition 8 (Minimal Cut-Sets). Given a combinatorial component S =
〈P , F, π〉 and a predicate T (PO), the set of minimal cut-sets, denoted MCS, is
defined as follows:

MCS(S, T ) = {cs ∈ CS(S, T )|∀cs′ ∈ CS(S, T ), cs′ ⊆ cs =⇒ cs′ = cs}

6.1 Modular abstraction equivalence

In this work we evaluate redundant networks by using modular predicate ab-
straction. In order to show the soundness of our approach, we prove that, given
a system composed of concrete modules, it is possible to substitute each individ-
ual module with its abstract counterpart. This result is stated in Theorem 1. We
organize the proof using the following lemmas. Lemma 1 states that the if two
combinatorial components are equivalent, it is possible to sequentially combine
them with a third component and preserve the equivalence. Lemma 2 states a
similar result for parallel composition.

Lemma 1 (Reduction equivalence). Given the combinatorial components S,
S′, and S′′, if S′ ≡ S′′ then S . S′ ≡ S . S′′ and S′ . S ≡ S′′ . S.

Lemma 2 (Parallel equivalence). Given the combinatorial components S′1,
S′′1 , S′2, S′′2 , if S′1 ≡ S′′1 ∧ S′2 ≡ S′′2 then S′1|S′2 ≡ S′′1 |S′′2 .

Theorem 1 allows us to generate an equivalent network of combinatorial
components by using only abstract modules. Namely, it enables substitution of
a concrete module with its abstract counterpart, provided that the application
of abstraction and concretization on inputs preserves the behavior of the outputs
in the abstract domain, as formally defined by the hypothesis.



Theorem 1 (Modular abstraction equivalence). Given a combinatorial
component S = S1 . . . . . Sn, a set of abstractors A1, A2, ..., An and a set of
concretizers C1, C2, ..., Cn, where C(S) = C1 . S1 . S2 . . . . . Sn−1 . Sn . An and
A(S) = C1 . S1 . A1 . . . . . Cn . Sn . An, such that ∀i ∈ {1, ..., n}. |PCi

O | =

|PSi

I | ∧ |P
Si

O | = |P
Ai

I |
if ∀i ∈ {2, ..., n}.Ai−1 . Ci . Si . Ai ≡ Si . Ai

then C(S) ≡ A(S)

Proof. by hypothesis Sn . An ≡ An−1 . Cn . Sn . An

then (by Lemma 1) C(S) ≡ (C1 . S1 . S2 . ... . Sn−1) . (Sn . An) ≡
(C1 . S1 . S2 . ... . Sn−1) . (An−1 . Cn . Sn . An)

then (by hypothesis) Sn−1 . An−1 ≡ An−2 . Cn−1 . Sn−1 . An−1

then (by Lemma 1) ... . Sn−2) . (Sn−1 . An−1) . (Cn . Sn . An) ≡
... . Sn−2) . (An−2 . Cn−1 . Sn−1 . An−1) . (Cn . Sn . An)

then, keep applying hypothesis and Lemma 1 it is possible to conclude that

(C1 . S1) . (S2 . A2) . (C3 . ... ≡
(C1 . S1) . (A1 . C2 . S2 . A2) . (C3 . ... ≡ A(S)

The results stated in Theorem 1 is very general; it can be applied to different
abstractions, provided that the hypothesis of the theorem holds. In the case of
stages that are a parallel composition of modules, the hypothesis can be proved
with Lemma 2, and this is an important aspect when dealing with Tree and
DAG systems. As a corollary, we obtain that it is possible to compute the MCSs
for the concrete system on the abstract system.

Corollary 1 (Computation of Minimal Cut-Sets). If a combinatorial com-
ponent S = S1.. . ..Sn, the abstractors A1, ..., An, and the concretizers C1, ..., Cn
satisfy the hypothesis of Theorem 1, then MCS(C(S), T ) = MCS(A(S), T ).

7 Experiments

7.1 Implementation

We implemented our approach on top of the NuSMV3 system, a verification
tool built on top of NuSMV2 [20] and MathSAT [21]. NuSMV3 provides various
SMT-based verification algorithms, and various engines for predicate abstrac-
tion [1,2]. The functionalities that are relevant for this paper are the ability to
deal with EUF theory, predicate abstraction via AllSMT [35], and the capability
to generate Fault Trees with probabilistic evaluations as described in [13].

Our implementation takes a description of a nominal model, its counterpart
expressed with redundancy schemas, and can generate either the monolithic



problem or the compositional problem, where the various components are mod-
eled with fault variables and predicates describing discrepancies between the
nominal and redundant flow.

We instantiated the framework described in Section 5 using the following
abstraction, which expresses, given a set of input and output ports, the equiv-
alence between nominal values and their extended version. More precisely, con-
sidering a stage with a nominal component having in, on as input and output
ports, and a redundant module duplicating the signals with i1, i2, o1, o2 as ports,
our abstraction generates the predicates {(in = i1), (in = i2)} as input, and
{(on = o1), (on = o2)} as output.

In order to use the results of Section 6, we have to prove that the hypothesis
of Theorem 1 holds for our predicates. For this purpose, we carried out an
equivalence checking using the MathSAT SMT solver. Specifically, we proved
that the formula @M : ¬(πα(M) ⇐⇒ πγ(M)) is unsatisfiable for each SMV
module implementation, where πα and πγ represent, respectively, abstract and
concrete formula modulo predicates, as expressed in Theorem 1. Thus, each
sequence Ci . Si .Ai explicitly represents an abstract component, and it is used
as a single module that is computed using AllSMT-based predicate abstraction
techniques.

The generation of Fault Trees, in the form of Binary Decision Diagrams [18],
provided the best performance by disabling dynamic reordering, and using a
statically computed ordering, based on the topology of the analyzed system. In
detail, considering the example in Expression 2, the ordering starts with faults
and output predicates for the module M1, followed by the variables of M2, then
the ones from M3 (D modules do not have variables), and so on.

The setting for the experimental evaluation comprises the generation of the
abstract modules, for each of the possible pair of nominal and redundant com-
ponents represented in Figure 2, and then caching their machine representation.
The time needed to perform such process is not taken into account in the scal-
ability evaluation, however this operation takes on average 5 seconds with a
maximum time of 10 seconds. The target of our evaluation consists in Fault
Tree Analysis (generation of MCSs), with a top level event stating that the
output of the nominal network differs from the redundant one. The library of
abstract components consists of 12 different redundancy configurations with 1, 2
and 3 voters per stage. The system configuration for the standard methodology
of [13], without predicate abstraction, is similar to the setting with modular
abstraction with the difference that each module is a concrete representation
with real variables and EUF functions. The algorithms used in both cases are
based on Fault Tree generation as proposed in [14]; given the difference between
concrete and abstract, in the first case we use SMT-based techniques, whereas
for the latter we use the BDD-based ones.

7.2 Experimental evaluation

We compared the performance of the monolithic and compositional approaches
on a wide set of benchmarks, including randomly generated and real-world ar-



chitectures. Whenever both techniques terminated, we checked the correctness
by comparing the Fault Trees. We ran the experiments on an Intel Xeon E3-1270
at 3.40GHz, with a timeout of 1000 seconds, and a memory limit of 1 GB.

Linear Structures We first analyzed the scalability of the approach on linear
TMR structures. The TMR chains experiments consider networks of length n
with 1, 2 and 3 voters, with different combinations of structures. The results of
this comparison are presented in Figure 4: the x axis represents the length of the
chain, while on the y axis there is the time needed to compute the minimal cut-
sets. The concrete generation reaches the timeout starting from a TMR chain
with 1 and 2 voters of length 20, while with 3 voters, it is not able to evaluate
more than 10 stages within the timeout. The modular abstraction approach is
able to perform FTA in less than 110 seconds for a TMR chain of length 140,
both with 1, 2 and 3 voters.

The two and three voters schemas are much harder to deal with (as wit-
nessed by the relative degrade in performance of both techniques). In fact, the
presence of additional voters increases the number of fault variables, and the
overall number of cut-sets. In the case of compositional, partitioning helps to
limit the impact on performance. However, the compositional approach is vastly
superior to the monolithic one which shows a significant degrade in performance.

Scalability on Tree and DAG structures We then analyzed tree and DAG
diagrams, first considering the design description presented in [3], that describes
a DAG redundant structure as shown in Figure 1. In this case, the modular
abstraction technique is able to perform FTA in 0.025 seconds, while the concrete
case takes 4.5 seconds. Both methods construct the set of 102 minimal cut-sets.

The analysis of a real-word system architecture concerned the verification of
the redundancy management of the Boeing 777 Primary Flight Computation, as
described in [46]. The model considers a system with 36 redundant modules and
123 possible faults. In this case, the technique based on predicate abstraction
takes 1.07 seconds to generate the Fault Tree composed of 195 minimal cut-sets.
Differently, the monolithic approach takes 4680 seconds (1 hour and 18 minutes).

In order to evaluate the performance of modular abstraction, we built a
random generator of Tree and DAG structures. The problems are generated by
picking a module type from the set of possible ones, adding it to the network with
inputs selected from inputs of the system or outputs of previously introduced
modules, until the target system size is reached. In order to be able to relate
numbers of modules and verification complexity, we imposed that the increase
of system diameter between two consecutive layers is at most two modules. This
means that a random tree structure with length 140 has a maximum diameter
of 22 modules (i.e. max diameter with n modules is 2 ∗

√
n− 1).

The set of possible components is defined with modules with 1, 2, and 3
inputs and a single output, in addition to the special components D, which
replicates the input to two equal set of outputs, and an identity module I.
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The random generation of Tree and DAG networks allows us to compare the
performances of two approaches. Figure 5 shows a scatter plot of the results for
networks of size until 25, with red and blue points representing respectively Tree
and DAG architectures. The results of this test clearly illustrate the improvement
due to the abstraction, which is able to perform the analysis in less than 1.5
seconds for each instance, with an average gain in performance that is in the
order of 102 (i.e. Gain (Min, Avg, Max) = (2, 6 ∗ 102, 7 ∗ 103)).

The scalability evaluation of the modular approach in the case of Tree and
DAG structure is shown in Figure 6. In this chart, the x axis represents the
number of modules composing the network, while the y axis shown the total
time to compute the full set of minimal cut-sets. The module count in the case of
DAG does not consider the components of type D or I, due to the fact that they
essentially express links between stages. The results shows that the performance
in the case of Linear, Tree or DAG structure are almost comparable, in fact
almost all the time is spent on the BDD quantification of predicates.

In the monolithic case, the bottleneck is clearly the AllSMT procedure (with
optimizations described in [14]), due to the excessive number of cut-sets. In the
compositional case, the time for initializing the library accounts in total for less
than 1 minute. This cost is payed only once, and the necessary abstractions can



be cached. Once the library is initialized, the main source of inefficiency is the
generation of the BDD. This cost appears hard to limit, but we remark that we
are obtaining an expensive quantification by partitioning and inlining.

8 Conclusion

In this paper we tackled the problem of automated safety assessment of redun-
dancy architectures. In this work, we enhance the approach proposed in [13],
where functional blocks are modeled within the SMT(EUF) framework. We fo-
cus on the construction of Fault Trees, that is a fundamental step in [13]: this
step was tackled as a problem of AllSMT [35] and turned out to be a bottle-
neck. Here we propose a compositional technique for the construction of fault
trees that relies on the idea of predicate abstraction, and partitions the prob-
lem, trading one large quantifier-elimination operation with several (but much
simpler) operations. We prove the correctness of the decomposition, and provide
an implementation realized on top the MathSAT5 solver. An experimental eval-
uation demonstrates dramatic improvements in terms of scalability with respect
to the monolithic quantification. This makes it possible to construct Fault Trees
with more than 400 minimal cut-sets from 26∗140 (10250) possible fault configu-
rations. The availability of this tool allows us to automatically obtain results for
realistic configurations that were previously out of reach.

In the future, we will investigate the integration of these techniques into an
architecture decomposition framework, based on contract-based design [24]. We
will also analyze the problem of synthesizing the best configuration for a given
cost function. Future work will also consider the analysis of various forms of
deployment, where functions are run on the same platform. This form of anal-
ysis, also known as Common Cause Analysis, can be expressed in the modeling
framework, but it is currently unclear if the compositional analysis is retained.
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