
CoSA: Integrated Verification for
Agile Hardware Design

Cristian Mattarei, Makai Mann, Clark Barrett, Ross G. Daly, Dillon Huff, and Pat Hanrahan
Stanford University

Stanford, California (USA)
{mattarei, makaim, clarkbarrett, ross.daly, dhuff, pmh}@stanford.edu

Abstract—Symbolic model-checking is a well-established tech-
nique used in hardware design to assess, and formally verify,
functional correctness. However, most modern model-checkers
encode the problem into propositional satisfiability (SAT) and do
not leverage any additional information beyond the input design,
which is typically provided in a hardware description language
such as Verilog.

In this paper, we present CoSA (CoreIR Symbolic Analyzer),
a model-checking tool for CoreIR designs. CoreIR is a new
intermediate representation for hardware. CoSA encodes model-
checking queries into first-order formulas that can be solved by
Satisfiability Modulo Theories (SMT) solvers. In particular, it
natively supports encodings using the theories of bitvectors and
arrays. CoSA is closely integrated with CoreIR and can thus
leverage CoreIR-generated metadata in addition to user-provided
lemmas to assist with formal verification. CoSA supports multiple
input formats and provides a broad set of analyses including
equivalence checking and safety and liveness verification. CoSA
is open-source and written in Python, making it easily extendable.

I. INTRODUCTION

Formal verification has become an important part of the de-
sign process, particularly in the hardware domain. As hardware
and software systems become increasingly complex, more time
than ever before is spent on verification to avoid costly and
potentially dangerous bugs.

For many years, hardware model-checking experts focused
on general techniques applicable to any design provided in
a standard format such as a hardware description language
(HDL) or AIGER [6], without any extra information from
the designers. While there has been impressive progress,
these techniques still often fail to scale on industrial-sized
systems. This requires verification engineers to either shrink
the parameter sizes if possible, or manually add additional
lemmas. Frequently, these additional lemmas are simple in-
variants which are known by the designer or design tool, but
are not easily inferred by the formal system.

This paper introduces the CoreIR Symbolic Analyzer
(CoSA), a model-checking tool for the hardware intermediate
representation CoreIR [11]. CoSA can leverage additional
knowledge provided by CoreIR to improve performance on
many classes of proofs.

This research was supported in part by the Defense Advanced Research
Projects Agency (contract FA8650-18-2-7854) and by gifts from Intel Corpo-
ration (through the Stanford Agile Hardware Project) and Cisco Systems.

Halide

Place and 
Route

Yosys
(Verilog) …

CoreIR

High-level Functional 
Definition

Intermediate Circuit 
Representation

Bitstream CGRA 
configuration

Fig. 1. AHA Flow

CoSA was developed as a tool for verifying correctness at
various stages of the toolflow in the Agile Hardware (AHA)
Project at Stanford University [18]. This project aims to
improve performance and design productivity by incorporat-
ing ideas from agile software development to speed up the
development cycle.

Compared to the software community, there are very few
open-source tools for hardware design and verification. As
seen in the software domain, open-source tools can help en-
courage innovation and distribute effort, the latter of which is
particularly lacking in the hardware community. Furthermore,
in the last decade, open-source SMT solvers have become
powerful tools for verification, and the community no longer
needs to rely exclusively on commercial tools. In support of
these goals, the Agile Hardware Project is developing an end-
to-end open-source toolchain.

The rest of the paper is organized as follows: Section II
provides background on CoreIR and the Agile Hardware
Project; Section III describes CoSA’s supported formal anal-
yses, architecture, and integration with design; Section IV
describes a set of applications of the tool; Section V covers
related work on hardware verification tools; and Section VI
provides concluding remarks.

II. COREIR

CoreIR is an intermediate representation and compilation
framework for digital designs [11]. It is front-end agnostic and
thus can be a compiler target for any language representing
hardware designs. Primitives in the IR have the same semantics
as the SMT theory of bitvectors [3], allowing for easy formal
verification integration. CoreIR can be transformed into cus-
tom back-ends using a flexible pass framework, and serialized
into different hardware and SMT-based formats.



In the AHA toolflow [18], depicted in Figure 1, a user first
writes an application in a high-level language, such as the
image processing domain-specific language, Halide [19]. This
compiles to CoreIR and then goes through several optimization
passes before being mapped to a back-end. One of the main
targets of the AHA tool flow is a custom Course-Grained
Reconfigurable Array (CGRA). The CGRA is designed to have
the flexibility of an FPGA while improving performance on
certain kinds of applications (e.g. image processing) [23]. This
performance is gained by configuring at the word level and by
composing specialized heterogeneous tiles containing mem-
ories and dedicated processing elements (essentially ALUs).
A set of place and route tools produce a bitstream which
configures the CGRA to implement the application.

As shown in Figure 1, other high-level hardware description
languages can integrate with CoreIR in addition to Halide. In
fact, the CGRA is written in Verilog, which is compiled into
CoreIR using the VerilogToCoreIR [13] Yosys [25] pass. An-
other example is the hardware design language Magma [21].

The verification goals in the AHA project include assessing
functional correctness of the CGRA, as well as verifying
that the firmware produces the correct configuration for the
high-level, behavioral definition from Halide. Given these
requirements, we integrated the formal verification at the
CoreIR level, thus allowing us to support the required analyses.

III. COSA: COREIR SYMBOLIC ANALYZER

CoSA integrates with CoreIR to provide formal analyses.
In this section we explain the analyses supported by the tool
and describe its architecture.

A. Formal Analyses

CoSA reduces all analyses to symbolic model-checking
problems [10]. The underlying theoretic model is a Symbolic
Transition System (STS), as expressed in Def. 1.

Def. 1 (Symbolic Transition System). A Symbolic Transition
System is a tuple S = 〈V, I, T 〉 where V is a set of (input
VI , state VS , and output VO) variables, I(V ) is a formula
representing the initial states, and T (V, V ′) is a formula
representing the transitions. A state of S is an assignment
to the variables VS .

The core analyses of CoSA are primarily based on safety
and liveness checking. A safety property is a formula ϕ which
should hold in every state of an STS M (denoted in Linear
Temporal Logic [22] as M |= Gϕ). This is essentially invariant
verification, meaning that if the property holds then ϕ is an
invariant of the system. If the property does not hold, an
execution of the system that leads to ¬ϕ is typically provided
as a counterexample.

Alternatively, a liveness property is a formula ϕ which
should hold infinitely often in every execution of an STS M
(denoted M |= GFϕ), A practical example of this analysis is
to verify that a processor is always going to be ready to receive
a new command. In liveness verification, a counterexample is
an execution where, at some point, ϕ no longer holds along

CoSA

AnalyzersTransition 
Systems Problem Printers Encoders

PySMT PyCoreIR

CoreIRCVC4 Z3 MathSAT …

Fig. 2. CoSA Architecture

an infinite execution path. A typical representation of such a
trace is a “lasso-shaped” execution, in which the last state of
the trace is equal to one of the previous states.

When analyzing circuit designs, it is often necessary to
perform equivalence checking between two systems. The
checking is usually based on standard safety verification on
a synchronous combination of the systems under analysis, as
expressed in Definition 2.

Def. 2 (Synchronous Product of STS). Given two Symbolic
Transition Systems S1 := 〈V1, I1, T1〉 and S2 := 〈V2, I2, T2〉
where V1 ∩ V2 = ∅, the synchronous product S of S1 and S2,
namely S1×S2, is defined as S := 〈V1∪V2, I1∧I2, T1∧T2〉.

B. Verification Engines

CoSA analyzes model-checking problems with Bounded
Model-Checking (BMC) [5] techniques, and encodes them
using SMT formulas. For each analysis, CoSA provides
techniques able to prove or disprove the property. More
specifically, for the counterexample generation of safety and
liveness verifications the tool relies on BMC [5], while K-
Induction [20]/Interpolation [15] and K-Liveness [9] are used
to prove safety and liveness properties, respectively.

C. Framework

CoSA [14] is written in Python and its usage is regulated by
the modified BSD license. As represented in Figure 2, CoSA
builds on top of PySMT [12], which provides a solver-agnostic
Python library to interface with SMT solvers. The internal
architecture of CoSA is divided into the following parts:
• Transition Systems: defines the internal representation

of the model, which is based on a hierarchical set of
Transition Systems;

• Analyzers: implements the logic responsible for solving
a verification problem. This includes BMC engines and
liveness checking;

• Problems: used to define and manage the status of a
verification problem;

• Printers: provides support for trace printing (i.e., textual
or VCD format), and model translation such as the
generation of an SMV file [8];

• Encoders: responsible for encoding different model de-
scriptions into the internal representation. This includes
interpreting CoreIR models, and extracting additional
information used to optimize the verification process.



Case Study # State Vars Total # Bits
A 44 14,771
B 110 27,307
C 1,029 (5 Arrays) 414,847

TABLE I
SIZES OF THE CASE STUDIES - REPORTED FOR COMPOSED SYSTEMS.

For added flexibility, CoSA supports multiple input formats,
all of which get translated internally into STS’s. In fact,
the model under analysis is defined using a list of files
whose STS’s are synchronously combined (see Def. 2) to
produce a single STS. The supported input formats are CoreIR,
Explicit-state Transition System (ETS), Symbolic Transition
System (STS), and BTOR2 [16]. More information on the
input formats is provided in [14]. This approach allows the
user to describe complex analyses without modifying the
original CoreIR model. For instance, the analysis of pro-
grammable hardware often requires a configuration sequence
before checking its behavior. This sequence typically includes
a reset procedure, for both pos-edge and neg-edge registers,
as well as a configuration phase which sequentially loads
a bitstream through the configuration port. CoSA facilitates
a clear separation between hardware definition, e.g., CoreIR
design, and configuration sequence, e.g., ETS. CoSA can
generate SMT-LIB files for each of the analyses. Moreover,
the ability to translate to SMV format makes it possible to
use additional model-checkers such as nuXmv [8].

IV. CASE STUDIES

Below we include several case studies illustrating the utility
of CoSA. All of these examples come from the Agile Hard-
ware Project, and cover various stages in the Agile Hard-
ware flow including hardware design, optimization passes,
and mapping image processing applications to reconfigurable
hardware. All models were translated to CoreIR from (System)
Verilog or Halide in order to be analyzed with CoSA. Table I
reports the number of variables in the models, including the
total size in Bits. All experiments were run on a 2.6GHz Intel
Core i7 with 16GB of RAM, and we compared with Yosys,
as a reference for open-source word-level model checking.

A. Hardware: Global Controller

The global controller is responsible for configuring the
CGRA, managing clock domains, and reading register values
for debugging. This module interfaces the JTAG controller,
which handles serial communications to and from the chip,
with the main CGRA fabric. In this case study, we focused on
verifying the global controller in isolation.

The global controller has a register named state which
records the current state. Certain operations might take mul-
tiple cycles to complete, so it uses a counter to keep track of
the number of cycles. At the beginning of an operation, the
counter is set to the expected delay, and the controller returns
to the ready state when the counter reaches zero.

Table II lists a selection of properties we attempted to verify
using CoSA and the result of each. For the third property,
CoSA exposed a bug in the design that could cause the global
controller to be stuck in the current state for 232 cycles. The

Property Result
Always return to ready state, assuming counter delay < 10 T
When not in ready state, the counter always decreases T
No underflow in counter F
Read signal is high implies the controller is in the read state T
Write signal is high implies the controller is in the write state F

TABLE II
PROPERTIES FOR THE GLOBAL CONTROLLER

global controller allows the user to configure the operation
delay, and because of subtle timing issues, the counter is
assigned to the user-specified delay minus one. Thus, if the
user asks for a delay of zero, the counter underflows. In this
case, the counter would count down starting at the maximum
value of a 32-bit unsigned integer and the only way to recover
would be to reset the controller. This issue was fixed by
special-casing zero-delay requests.

CoSA also found a counterexample trace in which the write
signal could be corrupted. This is accomplished by asking the
global controller to switch clock domains, then immediately
requesting a write operation. The clock domain switch disables
all other operations until the switch is completed, but there is
a delay of one clock cycle. Thus, if the write signal is enabled
within that delay, it is kept high throughout the clock domain
switch, but the controller is not in the write state. While
interesting, this could not happen in the full system, because it
always takes multiple cycles to produce each operation through
the JTAG controller.

We also compared the performance of CoSA against the
Yosys verification engine, only considering safety properties
since Yosys does not natively support liveness checking. We
ran the SMT solver CVC4 [1] on the SMT-LIB generated by
CoSA and by Yosys (configured with Verific [24] bindings for
parsing temporal SystemVerilog Assertions). It takes 4.684s
to check all the properties generated by CoSA and 5.395s to
check the properties generated by Yosys. The runtimes are
comparable, with CoSA running slightly faster.

B. Software: Fold-Constants Pass

CoreIR has an extensible infrastructure for optimization
and analysis passes on hardware designs. In the context of
the Agile Hardware Project, the design goes through multiple
passes before being placed and routed on the fabric. To catch
bugs as close to the source as possible, it is desirable to check
that these passes produce functionally equivalent designs.

CoSA supports equivalence checking on CoreIR design files
and, when necessary, incorporates extra information provided
by the CoreIR pass to assist in the proof.

The fold-constants pass is interesting because it can change
the number of state variables in the system, which traditionally
makes equivalence checking far more difficult. The pass takes
any subgraph of the design which is always constant and
replaces it with a constant module. The replaced subgraph
could be combinational logic operating on constants, or it
could be a register which never changes value.

1) Equivalence Checking: Although this pass modifies the
design, the functional behavior of the system should not



CoSA

Analyzers

Encoders
CoreIR
Design

CoreIR
Design 

(after pass)

BMC with 
K-Induction

CoreIR

Miter Equivalence 
Proof

Counter-
example

TS
2

Ca
nd

id
at

e 
Le

m
m

as

TS
1

TS1 x 
TS2

Candidate 
Lemmas

Fig. 3. CoSA automatic proof decomposition strategy for CoreIR passes

change. Given two STS’s S1 and S2, we need to check that
S1 × S2 |= G(VI1 = VI2) =⇒ G(VO1

= VO2
).

A pure SMT-based K-Induction technique could solve this
problem; however, it does not scale well even for moder-
ately sized systems. Alternatively, a verification expert could
manually add additional lemmas, but this is time-consuming
and procedural. Instead, our approach is to generate lemmas
from CoreIR, as depicted in Figure 3. In this specific case,
these lemmas express the part of the circuit that has been
replaced with a constant by CoreIR, and CoSA adds them
as assumptions for the equivalence proof only if they are
invariants in the model.

With this proof decomposition, CoSA can check 52 lem-
mas and prove equivalence between pre-pass and post-pass
CoreIR of a CGRA processing element tile configured to do a
multiplication in 50 seconds, whereas K-Induction without the
additional lemmas does not complete in 2 hours. To compare
with Yosys, we produced Verilog from CoreIR for the pre-
pass and post-pass designs. These were instantiated together
in a top module, similar to the synchronous product encoding
in CoSA. K-Induction in Yosys was also unable to prove
equivalence in 2 hours.

C. Firmware: Sequential Equivalence of Design and Config-
ured Hardware

We have shown above that CoSA can prove properties of
Verilog designs, as well as functional equivalence between
CoreIR designs transformed by optimization passes. It is
also useful to verify that the configured CGRA faithfully
implements the application described by a CoreIR file.

As a simple example, we generated CoreIR that implements
a 2x1 convolution, henceforth referred to as the application.
This was mapped to CGRA primitives, and then the place
and route tools were used to produce a bitstream for a 4x4
CGRA. From the bitstream, we generated an ETS, SETS ,
which toggles configuration signals and passes the bitstream
to the CGRA inputs. We simulated the CGRA synchronized
with SETS in CoSA to configure the CGRA.

For performance reasons, it helps to simulate without un-
rolling. In this case, the transition relation was only unrolled
one step. The SMT solver was called repeatedly to generate
the next step, and the initial state was reassigned each time.
A separate check can verify that the configuration phase
is deterministic and correct. For space reasons this is not
covered here. Once the CGRA was configured, the reset and

configuration signals were disabled, and the initial state was
assigned to the configured state.

A 2x1 convolution slides a 2-dimensional kernel over an
input image. In hardware, this is implemented serially using a
linebuffer to delay input pixels. In this case, it was configured
for 10x10 input images, and thus the linebuffer has depth 10.

The application implements the linebuffer using a memory
with a 5-bit address and a counter. The CGRA implements
the linebuffer with nontrivial use of two memories with 9-bit
addresses. Convolution depends on the correct linebuffer be-
havior; thus, these memories could not be soundly blackboxed
in a SAT-based model checker. CoSA encodes memories from
both the application file and the translated CGRA using the
SMT theory of arrays.

We were unable to prove full equivalence because, due
to the linebuffers, the equivalence property is not inductive.
Unfortunately, we also cannot strengthen the property with
array extensionality because of the different use and address
widths of memories in the two linebuffer implementations:
the memory abstractions are incomparable via standard array
equivalence. However, in 2 minutes CoSA was able to prove
that if reset is held low, the configuration of the CGRA
does not change. Furthermore, CoSA showed in just over 80
minutes that, under basic assumptions of correct usage, the
configured CGRA matches the behavior of the CoreIR 2x1
convolution for all executions up to 20 cycles (10 cycles of
valid pixel output). For the first ten cycles, inputs are invalid.
Thus, CoSA begins sequential equivalence checking once the
linebuffer is full and output pixels are valid. Full verification
with larger designs is the aim of ongoing work.

V. RELATED WORK

BtorMC [17] is a word-level model checker that relies on
the SMT-solver Boolector 3.0 [17] to solve (invariant) model
checking problems using bounded techniques [4]. Differently
from CoSA, BtorMC is tightly integrated with Boolector, and
it does not allow for a simple integration with different solvers.

Yosys [25] is an open source Verilog synthesis suite that
provides SMT-based invariant model checking. It interfaces
with SMT solvers via SMT-LIB [2] files. Yosys can also rely
on ABC [7] for other analyses such as liveness checking.
However, ABC engines are based on an encoding into SAT.

VI. CONCLUSION

In this paper we introduced the CoreIR Symbolic Analyzer
(CoSA), an open-source formal verification tool for CoreIR.
CoSA provides a broad set of SMT-based formal analyses in-
cluding model checking and equivalence checking. Moreover,
CoSA is able to automatically extract additional information,
such as lemmas, from CoreIR to speed up verification tasks.

A series of case studies from the Agile Hardware (AHA)
Project at Stanford University [18] were described in order
to show that CoSA is capable of handling real hardware
verification problems.

For future work, we intend to extend the functionality of
CoSA to include full support of Linear Temporal Logic (LTL)
and additional input formats such as SMV.



REFERENCES

[1] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c,
T. King, A. Reynolds, and C. Tinelli. Cvc4. In G. Gopalakrishnan and
S. Qadeer, editors, Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV ’11), volume 6806 of Lecture Notes
in Computer Science, pages 171–177. Springer, jul 2011. Snowbird,
Utah.

[2] C. Barrett, A. Stump, C. Tinelli, et al. The smt-lib standard: Version
2.0. In Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, England), volume 13, page 14, 2010.

[3] C. W. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli, et al. Satisfiability
modulo theories. Handbook of satisfiability, 185:825–885, 2009.

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking
without BDDs. In International conference on tools and algorithms
for the construction and analysis of systems, pages 193–207. Springer,
1999.

[5] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, et al. Bounded
model checking. Advances in computers, 58(11):117–148, 2003.

[6] A. Biere, K. Heljanko, and S. Wieringa. Aiger 1.9 and beyond. Available
at fmv. jku. at/hwmcc11/beyond1. pdf, 2011.

[7] R. Brayton and A. Mishchenko. Abc: An academic industrial-strength
verification tool. In International Conference on Computer Aided
Verification, pages 24–40. Springer, 2010.

[8] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta. The nuxmv symbolic model
checker. In International Conference on Computer Aided Verification,
pages 334–342. Springer, 2014.

[9] K. Claessen and N. Sörensson. A liveness checking algorithm that
counts. In Formal Methods in Computer-Aided Design (FMCAD), 2012,
pages 52–59. IEEE, 2012.

[10] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen.
Symbolic model checking. In International Conference on Computer
Aided Verification, pages 419–422. Springer, 1996.

[11] R. Daly. CoreIR: A simple LLVM-style hardware compiler. https:
//github.com/rdaly525/coreir, 2017.

[12] M. Gario and A. Micheli. Pysmt: a solver-agnostic library for fast
prototyping of smt-based algorithms. In Proceedings of the 13th
International Workshop on Satisfiability Modulo Theories (SMT), pages
373–384, 2015.

[13] D. Huff. Verilog to CoreIR translator. https://github.com/dillonhuff/
VerilogToCoreIR, 2018.

[14] C. Mattarei. CoSA: CoreIR Symbolic Analyzer. https://github.com/
cristian-mattarei/CoSA, 2018.

[15] K. L. McMillan. Interpolation and sat-based model checking. In
International Conference on Computer Aided Verification, pages 1–13.
Springer, 2003.

[16] A. Niemetz, M. Preiner, C. Wolf, and A. Biere. Btor2 , BtorMC and
Boolector 3.0. In H. Chockler and G. Weissenbacher, editors, Computer
Aided Verification - 30th International Conference, CAV 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes in
Computer Science, pages 587–595. Springer, 2018.

[17] A. Niemetz, M. Preiner, C. Wolf, and A. Biere. BTOR2, BtorMC and
Boolector 3.0. In Computer Aided Verification - 30th International
Conference, CAV 2018, Oxford, UK, July 14-17, Lecture Notes in
Computer Science. Springer, 2018.

[18] J. Parkhurst, M. Horowitz, P. Hanrahan, and C. Barrett. AHA Agile
Hardware Project. https://aha.stanford.edu/, 2018.

[19] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines.
ACM SIGPLAN Notices, 48(6):519–530, 2013.

[20] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties
using induction and a sat-solver. In International conference on formal
methods in computer-aided design, pages 127–144. Springer, 2000.

[21] S. University. Magma: a Hardware Design Language Embedded in
Python. https://github.com/phanrahan/magma, 2017.

[22] M. Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Logics for concurrency, pages 238–266. Springer, 1996.

[23] A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky,
and M. Horowitz. Evaluating programmable architectures for imaging
and vision applications. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13, Oct 2016.

[24] Verific Design Automation. Verific. http://www.verific.com/.
[25] C. Wolf, J. Glaser, and J. Kepler. Yosys-a free Verilog synthesis

suite. In Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), 2013.

https://github.com/rdaly525/coreir
https://github.com/rdaly525/coreir
https://github.com/dillonhuff/VerilogToCoreIR
https://github.com/dillonhuff/VerilogToCoreIR
https://github.com/cristian-mattarei/CoSA
https://github.com/cristian-mattarei/CoSA
https://aha.stanford.edu/
https://github.com/phanrahan/magma
http://www.verific.com/

	Introduction
	CoreIR
	CoSA: CoreIR Symbolic Analyzer
	Formal Analyses
	Verification Engines
	Framework

	Case Studies
	Hardware: Global Controller
	Software: Fold-Constants Pass
	Equivalence Checking

	Firmware: Sequential Equivalence of Design and Configured Hardware

	Related Work
	Conclusion
	References

