
Comparing Different Functional Allocations in
Automated Air Traffic Control Design
Cristian Mattarei, Alessandro Cimatti,

Marco Gario, and Stefano Tonetta
Fondazione Bruno Kessler - Trento, Italy

Email: {mattarei, cimatti, gario, tonettas}@fbk.eu

Kristin Y. Rozier
University of Cincinnati - Ohio, USA

Email: rozierky@uc.edu

Abstract—In the early phases of the design of safety-critical
systems, we need the ability to analyze the safety of different
design solutions, comparing how different functional allocations
impact on the overall reliability of the system. To achieve this
goal, we can apply formal techniques ranging from model check-
ing to model-based fault-tree analysis. By using the results of the
verification and safety analysis, we can compare the different
solutions and provide the domain experts with information on
the strengths and weaknesses of each solution.

In this paper, we consider NASA’s early designs and functional
allocation hypotheses for the next air traffic control system for
the United States. In particular, we consider how the allocation of
separation assurance capabilities and the required communica-
tion between agents affects the safety of the overall system. Due
to the high level of details, we need to abstract the domain while
retaining all of the key properties of NASA’s designs. We present
the modeling approach and verification process that we adopted.
Finally, we discuss the results of the analysis when comparing
different configurations including both new, self-separating and
traditional, ground-separated aircraft.

I. INTRODUCTION

By 2025 the airspace will be full [1]; demand for flights will
exceed the maximum number of planes that can fly at one time.
This problem is not due to a space limitation; there is room
for more planes in the air. We will instead exceed the ability
of our current system to safely separate commercial aircraft
and provide on-the-fly conflict detection and resolution. This is
because our current system relies heavily on human air traffic
controllers and there is a limit to the number of planes humans
can reason about simultaneously. We can solve this problem by
adding automation and enabling computers to compute routes
and resolutions to maintain safe separation between planes;
we already have implementations of optimized algorithms for
doing this [2]. But human controllers do much more than
3D geometric reasoning; the entire web of communications
between agents in the system, the distributed control structure,
and the logical system design all play integral roles in making
air traffic control so safe and reliable. If we design a new, more
automated system, how do we allocate all of the functions it
must perform in a way that upholds at least the current level
of safety? This is the functional allocation question.

The functional allocation question is first and foremost
about safety: our goal is to create a partial order on the set of
ways to allocate system functions such that system designers
can choose a most safe configuration and then optimize for

secondary goals, such as cost, scheduling, fuel efficiency, ease
of use, and environmental impact.

To this purpose, we considered the requirements specifica-
tion described in the NASA research plan [3] and interacted
with NASA engineers to formalize the functions in different
allocation configurations, as well as several system require-
ments to be analyzed. Model checking these properties on
different configurations gives us a first means for comparing
and ranking the design choices. As a second step, we analyzed
functional allocation by extending the model with faults and
analyzed the resulting fault trees [4]. Fault trees are commonly
used [5] in safety critical contexts, such as aerospace [6], in
order to understand which combination of faults can lead to
a violation of a safety property. On top of the fault trees,
we compute multiple metrics (including probabilistic ones) to
compare the different allocation configurations.

Our case study utilizes the tools NUXMV [7] for model
checking and XSAP [8] for fault-tree analysis. To our knowl-
edge, this is the first time that these kind of tools are applied
in the conceptual phase of a real design, when requirements
are still blurring and there is no existing concrete design
solution to compare with. Together with the models, the
artifacts produced by these tools provide information that
go beyond the mere pass/fail result characterizing in which
conditions properties pass or fail. This enables design choices
that minimize the impact of faults on the overall system.

Related Work

The complexity of safety-critical systems is continuously
increasing. Yet, the current state-of-the-practice is largely
characterized by manual approaches, which are error prone,
and may ultimately increase the costs of certification. This has
motivated, in recent years, a growing interest in techniques
for Model-Based Safety Assessment [9]. The perspective of
model-based safety assessment is to represent the system by
means of a formal model and perform safety analysis, both
for the preliminary architecture and at system level, using
formal verification techniques. The integration of model-based
techniques allows safety analysis to be more tractable in terms
of time consumption and costs. Such techniques must be able
to verify functional correctness and assess system behavior in
the presence of faults [10], [11], [12].

Formal analysis techniques have been applied in the context
of NASA’s Automated Airspace Concept (AAC) in [13].
That work focuses on analyzing the design proposed in [14]
in which the current techniques for Air Traffic Control are
extended with automated on-ground support (i.e., TSAFE
and Autoresolver). [13] opens the way to the application of
symbolic model checking techniques in this context, and the
analysis is then applied in a probabilistic setting in [15]. In
this paper, we start from a more preliminary design proposal
(described in NASA research plan [3]) in which we take
into account the distributed nature of separation assurance in
systems were both ground- and self-separated aircraft coexist.
To capture the interaction between the different agents, we
develop a different modeling abstraction. Moreover, to provide
interesting comparative information related to the safety of the
designs, we apply safety assessment techniques, such as fault
tree analysis.

Other works, e.g., [16], [17] focused on the formal verifica-
tion of specific functions such as collision avoidance. In this
paper, we assume that such functions are correct and we focus
on the safety analysis of function allocation question.

Another case study using the same tools is presented in [18].
In that case, an avionic wheel braking system is modeled
and analyzed according to the standard AIR6110. Different
architectures are considered following the process described
in the standard. The main differences are that first it focuses
on a specific embedded system and not on the interaction of
distributed systems; second, it is applied on a well-established
architecture and not on a design still in the conceptual phase;
finally, the focus on functional allocation addressed in this
paper gives more emphasis on some techniques such as the
functional analysis of the system reliability in different con-
figurations with respect to the failure probability of a function.

Contributions

The main contribution of this paper is the adaptation of
model checking and model-based safety analysis to formally
compare different designs, as required by NASA’s functional
allocation question. This required a careful definition of the
methodology for modeling and fault-tree analysis with the
aim of comparing different configurations keeping an abstract
view of the single functions. In particular, we handle modeling
subtleties in creating a realistic model, such as receptiveness
of faults, shadowing, and multiple disjoint communications.
Moreover, we verified a list of functional safety features, and
computed artifacts describing the reliability of the system with
respect to function failures. The outcome is that we are able
to support decision making providing, for each configuration,
a characterization of its safety and fault tolerance.

Outline

The rest of the paper is organized as follows: Sec. II lists
the functions and agents that define the functional allocation
question and the steps that we followed in the modeling
and analysis process; Section III describes the formal model,
including the architecture and the abstraction of the real

system based on conflict areas and time windows; Section IV
describes the formal properties used to validate the model;
Section V describes the formal properties used to characterize
the configurations; Section VI gives the details of how we used
fault-tree analysis to compare the configurations; Section VII
covers modeling subtleties and lessons learned while Sec. VIII
concludes.

II. FUNCTIONAL ALLOCATION FOR THE AUTOMATED AIR
TRAFFIC CONTROL SYSTEM

A. Problem description

NASA is tasked with designing the next, more automated,
air traffic control system for the United States. A major safety
goal is to minimize Loss of Separation (LoS), resolve any
such situations immediately, and never call upon collision
avoidance. LoS occurs when two or more aircraft become too
close to each other, i.e., they are below a defined safe distance
of 1000 feet vertical and 5 nautical mile horizontal separation.
If LoS is not resolved immediately, collision avoidance is
necessary. The functional allocation question asks how which
separation assurance (SA) capabilities to require and how to
distribute the functions of the design in combination with a
subset of these capabilities on top of a set of agents, in order to
minimize the number of LoS and the use of collision avoidance
techniques [3]. We consider the following agents, functions,
and capabilities:
Functions:

• Strategic Separation addresses short-term conflicts from
20 minutes in the future down to 3 minutes out from
a predicted LoS. Strategic separation is implemented in
software and can be running on a central computer on the
ground, on-board individual aircraft, or some combination
thereof. It uses the trajectories of each known aircraft in
the airspace, detecting any conflicts, and outputting res-
olution maneuvers for any aircraft involved in conflicts.

• Tactical Separation addresses near-term conflicts pre-
dicted to occur less than 3 minutes in the future. It
is also implemented in software running on either a
ground computer, an on-board computer, or a combina-
tion thereof. Tactical separation must employ a different
algorithm from strategic separation because the conflicts
it addresses are more imminent and different details must
be considered when generating resolution maneuvers.

• Collision Avoidance addresses possible collisions less
than 30 seconds in the future. Its presence is required by
Federal Aviation Administration (FAA) mandate, there-
fore, TCAS (and in the future ACAS-X), software runs
on-board every aircraft, detects possible collisions using
a transponder installed in the aircraft, and must operate
totally independently from on-ground systems. A system
safety objective is to never trigger collision avoidance.

Agents:

• Self-Separating Aircraft (SSEP) carry a separation as-
surance software on-board.

• Ground-Separated Aircraft (GSEP) rely on SA soft-
ware running on a central on-ground computer transmit-
ting to the aircraft.

• Air Traffic Control (ATC) Provides on-ground separa-
tion of GSEPs and, when needed, of SSEPs.

Capabilities:

• ADS-B Out (Automatic Dependent Surveillance-
Broadcast Out) is required on-board all aircraft by FAA
mandate by 2020; it broadcasts position information
to ADS-B ground stations and other aircraft within
transmission range.

• ADS-B In is optional by FAA regulations; it receives
ADS-B broadcasts from ground stations and other air-
craft.

Depending on who is in charge of what, and the available
resources, we can describe different designs. Different designs
will have different characteristics. Our goal is to provide some
qualitative measure of the goodness of each solution along
different dimensions. For example, in a scenario in which
both GSEP and SSEP aircraft are involved, we might want to
know whether a solution in which SSEPs perform both tactical
and strategic separation on-board is “better” than a solution in
which tactical separation is handled on-ground.

B. Overview of the process based on formal techniques

We approach the problem described above using formal
methods. We adopted the following first-step process.

1) Modeling (Sec. III): we formalized the system scenar-
ios described in [3]; the informal specification is very
abstract and includes only the aspects related to the
interaction among the agents; therefore our formalization
must choose the right level of abstraction capturing the
relevant aspects.

2) Validation (Sec. IV): we performed sanity checks to
validate that the formalization of model and properties
actually captures their informal descriptions; in particular,
the formal model describing aircraft and controllers are
analyzed separately to validate that certain behaviors are
allowed.

3) Verification (Sec. V): we formalized the requirements
into temporal properties and verified them in the different
configurations; some properties must be satisfied by all
configurations, but others are used to distinguish and
compare different configurations.

4) Safety analysis (Sec. VI): in the previous step, we eval-
uated the models under nominal conditions, i.e., each
component behaves correctly; in the fourth step, each
component was extended by adding faulty behaviors,
and we evaluated the safety and reliability of the con-
figurations using fault-tree analysis, in order to analyze
under which conditions the system can violate the system
requirements; the impact of failures of specific functions
on the system safety is analyzed to compare the different
configurations.

Communica)on	 Network	

ATC/AATC	

GSEP	 1	

ADS-‐B	

GSEP	 2	

ADS-‐B	

GSEP	 3	

ADS-‐B	

SSEP	 1	
	

ADS-‐B	

SSEP	 2	
	

ADS-‐B	

SSEP	 3	
	

ADS-‐B	

CD&R	 CD&R	 CD&R	

Fig. 1: Scenario instances

III. FORMAL MODELING FOR COMPARATIVE ANALYSIS
TO ANSWER THE FUNCTIONAL ALLOCATION QUESTION

A. System Architecture

In this section, we described the model used to analyze and
compare different configurations of the functional allocation1.
The model describes different possible configurations on the
number of aircraft. It does not consider the whole airspace, but
only the set of aircraft that can be in a conflict on intended
trajectories. Both SSEPs and GSEPs aircraft types are taken
into account, in addition to ATC and a communication network
at airborne level. Figure 1 provides an overview of our model,
which allows us to describe a variety of scenarios by enabling
or disabling some specific aircraft: only GSEPs or only SSEPs
operations (by disabling respectively all SSEPs or all GSEPs),
or mixed GSEPs/SSEPs scenario. All SSEP aircraft perform
self-separation for the strategic separation with a Conflict
Detection and Resolution (CD&R) onboard function, while
they rely on the ATC for tactical separation. GSEPs always
rely on ground ATC for both tactical and strategic separation.
In case an SSEP experiences problems, it is able to ask the
ground for strategic separation, thus being treated as a GSEP.
The aircraft communicate directly with the ATC while they
broadcast messages to other aircraft using the ADS-B. The
broadcast is handled by the communication network.

An important aspect is then to define the right level of
abstraction in order to guarantee that all the relevant aspects
are taken into account. In the following sections, we detail
what variables define the state of the system, how time passes,
and how this influences the change in the state. Note that our
analysis focuses on the protocol level and thus, in absence
of faults, we assume each component implementation to be
correct.

B. Trajectory Intentions and Conflict Areas

The basic information that is relevant for our analysis
is the trajectories that aircraft intend to follow, and more
specifically if their intention is in conflict with other aircraft.
The actual detail of the trajectories (i.e., the 3D position as a
function of time) is not part of our model. In fact, we reason
about the system at the architectural level, focusing on the

1The model can be downloaded from https://es-static.fbk.eu/people/
mattarei/dist/FMFAC-NASA/

https://es-static.fbk.eu/people/mattarei/dist/FMFAC-NASA/
https://es-static.fbk.eu/people/mattarei/dist/FMFAC-NASA/

AC1	

AC2	

X	

Tj1	

Tj2	

Tj3	 Tj4	

Tj5	

X	

Fig. 2: Conflict Areas abstraction

interaction between the components rather than on the precise
behavior of the components. We are not interested in which
specific trajectory an aircraft should follow to avoid a collision,
but only in whether their intentions are in conflict or not.
Therefore, we abstract away the detailed trajectory information
by introducing Conflict Areas (CA). Intuitively, two aircraft are
in the same CA, if their trajectories intersect in a given interval
of time. In this way, we can abstract the problem of separation
into the simpler problem of checking that two aircraft are not
in the same conflict area. Figure 2 shows an example when
two aircraft have to reach two separate destinations. In this
example we consider Tj1 and Tj2 for AC1, and Tj3, Tj4,
Tj5 for AC2. Figure 2 shows that AC1 and AC2 are in the
same CA if their intended trajectories are respectively Tj1
and Tj5, or Tj2 and Tj3. In all other cases, they are into
different CAs, representing the absence of conflicts. CAs are
used throughout our models anytime we talk about aircraft
intentions and resolutions sent by controllers.

C. Time windows

Most scenarios in [3] divide the responsibility of the
separation-assurance agents based on time windows. In partic-
ular, we consider four time windows: Current, Near, Mid and
Far. They represent symbolically consecutive time intervals.
Therefore, the trajectory intention of the aircraft define which
aircraft are in the same CA in each time window, as defined
in the previous section.

The Current window represents the immediate intention of
the aircraft, i.e. within 30 seconds. This window is managed
by Conflict Avoidance algorithms, e.g., TCAS, and is therefore
the key to the definition of LoS: two aircraft are currently in
LoS if they share the same conflict area in the Current window.
The tasks of tactical and strategic separation are then mapped
into the Near- and Mid-window (Tactical) and the Far-window
(Strategic). If two aircraft share the same conflict area in the
same window, we say that we have a predicted LoS.

In our model, the intention of aircraft is represented by
assigning each airplane with a CA for each window. Figure 3
shows an example with two aircraft. In this example, the
aircraft are in different CAs apart from the Far window. So,
we have a predicted LoS in that time window.

Intuitively, the windows shift with the passage of time: the
old Near information will became the new Current information
(Figure 3), while the intention for the other time windows

Current Near Mid Far

Conflict Avoidance Tactical Strategic

Current Near Mid Far

Conflict Avoidance Tactical Strategic

Time 0

Time 1

CA1 CA1 CA1 CA1 CA2

CA2 CA2 CA3 CA1 CA1

…..

…..

Current Near Mid Far

Conflict Avoidance Tactical Strategic

Time 2

AC1

AC2

Fig. 3: Near, Mid, Far windows, and their shifting

change according to the interaction among the agents. There-
fore, if we manage to resolve all predicted LoS, e.g., in the
Mid window, we will not have LoS. In order for conflicts
to be detected and resolved, we need to take into account
the communication between aircraft and the ATC and when
it occurs. In the model, passing of time is divided into two
main phases that alternate constantly: communication and
maneuvering.

During the maneuvering phase, windows are shifted (Fig-
ure 3). During the communication phase, the different agents
are able to exchange intentions and resolutions. For example,
the aircraft is able to provide its intention to the ATC, and
receive a suggestion for a new trajectory. We introduce a
bound on the number of communications during this phase, in
order to better understand whether multiple iterations between
agents can improve the reliability of the system. This inter-
leaving model may seem unintuitive. However, this choice is
justified by reality since we can only apply a maneuver after
deciding it, and it simplifies the modeling.

D. Scenarios Instantiation

As described in Sec. II, our exemplary scenario allows self-
separating aircraft (SSEP), which defines three sub-scenarios:
i) non-mixed operations with only GSEPs (current approach);
ii) mixed operations with both GSEPs and SSEPs; iii) non-
mixed operations with only SSEPs.

We consider a “four aircraft” scenario, where at most four
aircraft can be involved in a single conflict at one time. This
realistically covers the actual system since conflicts involving
more than two aircraft are exceedingly rare [14]. In this
way, we can use standard model-checking techniques for the
verification.

All possible configurations are represented by relying on
a single formal model, where each configuration is modeled
by enabling or disabling a subset of the components. For
instance, considering the model representation shown in Fig. 1,
the mixed operation scenario with 2 GSEPs and 1 SSEP is
obtained by disabling SSEP 2 and 3.

On top of that, our exemplary scenario describes different
possible implementation choices at the communication level
that can be enabled (E) or disabled(D):

• GSEP-far: GSEPs send far intentions over ADS-B Out;
• SSEP-far: SSEPs send far intentions to ATC.
Table I shows the size of the different scenarios in term of

Boolean variables and AND gates using And-Inverter Graphs
(AIG) in the AIGER format (http://fmv.jku.at/aiger/). The last
row contains the biggest configuration, which is composed of
353 bits and 4110 AND gates. The first column defines the
code used in the rest of the paper to refer to specific scenarios.Scenario Components # Bool. vars # AND gatescode GSEPs SSEPs ATC

PA 3 3 7 283 2226
G 3 0 3 122 1119

M1 3 1 3 185 1767
M2 2 2 3 193 1908
M3 1 3 3 201 2050
S 0 3 3 146 1413

M4 3 3 3 353 4110

TABLE I: Scenario instances (AIG format)
IV. VALIDATION

The scenarios that are taken into account in this work
represent the interaction between a controller (the Air Traffic
Control and the CD&R on-board of the SSEPs, i.e., the gray
components in Fig. 1), and the controlled system (the set
of aircraft). The objective of this work is to analyze how
the Separation Assurance agents control the aircraft. In order
to avoid a vacuous verification, we first need to validate
separately controllers and system.

A. Validation Properties Formalization
In order to validate the system we identified the following

requirements:
VAS-1: It is always possible to reach a LoS.
VAS-2: It is always possible to have no LoS.
VAS-3: It is always possible for an aircraft to maintain the

same current intention.
VAS-4: It is always possible for an aircraft to change its

intention.
The CTL formalization of the validation requirement VAS-

1 is exemplified in (1). More specifically, we want to define
that for every state of the system it is always possible to
reach a state where Loss of Separation (LoS) holds. The LoS
condition applies when at least two aircraft are in the same
current conflict area.

VAS-1 := AG(EF (LoS))

LoS :=
∨
i 6=j

aci.current = acj .current (1)

The expected behavior of the controllers is then defined by
the following requirements:
VAC-1: The controller should accept any possible trajectory

intent from every aircraft.
VAC-2: The controller should always send a correct resolu-

tion.
We validated the model using nuXmv [7], and the results

were positive for all 37 properties that formalize the validation
requirements.

V. VERIFICATION

The next phase starts with the formalization of a set
of properties gathered from the requirements document [3].
We then check whether different configurations satisfy the
formal properties. The results of these checks provide us
with additional information on the difference between the
configurations.

A. Requirements Formalization

We consider the following requirements:
VE-1 It is never possible to reach a Loss of Separation (LoS).
VE-2 It is never possible to have a predicted LoS in the Near-,

Mid-, or Far-Window.
VE-3 Every predicted LoS in the Near-, Mid-, or Far-Window

is detected by at least one SA agent.
VE-4 Every predicted LoS is detected by at least one SA

agent.
VE-5 Resolutions sent by the agent resolve the predicted LoS.
VE-6 Each aircraft must correctly apply the resolution.

The actual requirement formalization required 93 LTL prop-
erties, and their consistency has been validated using RAT.

The formal interpretation of the verification property VE-
2 is shown in (2). In particular, the property expresses the
requirement as a composition over the derived constraints on
the near, mid, and far windows.

VE-2 := VE-2near ∧ VE-2mid ∧ VE-2far

VE-2{near,mid,far} :=
∧
i 6=j

aci.{near,mid,far} 6= acj .{near,mid,far}

(2)

B. Formal Property Verification

All properties are evaluated against all models using
nuXmv [7]. The outcome of this evaluation is a table where
each cell expresses whether a scenario configuration satisfies
a specific property. This allows for a classification of the
different possible configurations, and distinguish between the
different main aspects that characterize them.

An interesting result is obtained when considering different
amount of information that are exchanged between agents. In
particular, taking into account the scenario M2, and compar-
ing the configurations E/E and D/D for GSEP-far/SSEP-far
implementation choices. In the first case the verification of
the requirement VE-2 is fully satisfied, while the latter does
not satisfies the sub-requirement over the far window. The
motivation of this fact is that each SSEP has the responsibility
for the strategic separation, and it requests an ATC support
only if it is not able to resolve the conflict. In addition to that,
each SSEP computes its intent according to the information
provided by other aircraft far intents, but in this case the
GSEPs are not providing this information. The result is that
each SSEP has not enough information to resolve the conflicts
(with GSEPs) in the far window, and the ATC will not provide
a backup support because the SSEPs are not requesting the
ground support.

http://fmv.jku.at/aiger/

TABLE II: Fault descriptions

Comp. Fault Description

GSEP/
SSEP

fault apply near Impossibility to apply the sug-
gested trajectoryfault apply mid

fault apply far
fault comm atc par Communication failure with

ATC (partial or total)fault comm atc tot

fault comm adsb ADS-B In and Out not
functional

ATC
fault near res Failure on providing a correct

resolutionfault mid res
fault far res

SSEP.
CD&R

fault resolve Failure on generating the
resolution

fault resolve detection Failure on detecting a
resolution problem

VI. SAFETY ANALYSIS

Performing safety analysis of a formal model requires
extending the nominal behavior case, i.e., when everything
goes as expected, by allowing undesirable behaviors, i.e.,
failures. The formal model is a representation of a set of
requirements, so the occurrence of a fault describes a violation
of a system requirement. For instance the constraint describing
that each SSEP shall send its trajectory intentions to the ATC
holds under nominal conditions, but not in case of a failure
(triggered by a specific fault). The safety analysis will then
evaluate which faults can lead to an unwanted condition,
represented by the negation of a system property, such as Loss
of Separation between two aircraft. In safety analysis, such
undesired condition is also called Top Level Event (TLE).

In this paper we concentrate on the Fault Tree Analysis [4]
(FTA), which is a Safety Analysis technique that consists in
finding the set of all possible faults configurations, named cut-
sets, that may cause the occurrence of an unwanted behavior.
A general application of the FTA considers only the cutsets
that are minimal (MCS). More specifically, a cutset that can
cause the TLE is called minimal if every additional failure
will not prevent such undesired behavior.

A. Faults Definition

In this case study we added several faults for each sub-
component (Table II), in order to check the robustness of
each system. For example, we consider different types of
communication failure. Aircraft equipped with ADS-B can
permanently lose the ability of sending (ADS-B Out) and
receiving (ADS-B In) messages (fault comm adsb). Similarly,
aircraft might lose the ability of communicating with the ATC.
In this case, however, we study two different ways in which we
can lose communication: permanently (fault comm atc tot) or
temporarily (fault comm atc par).

As defined in the requirement documentation, we assume
that the components may have the ability to detect the occur-
rence of some specific faults. For example, a communication
link might provide some sort of heartbeat. In these cases, it
makes sense to consider some built-in resilience capabilities

for the system. For example, if an SSEP realizes that it cannot
communicate with the other SSEPs, it will request support
from the ATC. According to that, we modeled the capability of
enable different behaviors related to a communication failure
occurrence. This applies only to partial communication failures
(see Table II).

B. Formal Fault Tree Analysis

We compute Fault Trees using xSAP [8], that implements
the techniques described in [19].

The analysis of an artifact like a fault tree is important to
understand the dependencies between each single component,
how they interact, and what is necessary to go wrong in order
to not guarantee a necessary behavior of the system.

For instance, we expect that the communication failure
of the radio transmission of the ATC can cause a loss of
separation between two GSEP aircraft (even if it would be
highly improbable). However, we may expect that the loss of
communication of a single GSEP cannot cause a LoS, because
the ATC would be able to maneuver all the other aircraft in
order to avoid him.

For each combination of scenario configuration we com-
puted the associated Fault Tree. In the case of property
verification, the comparison between two different system
configurations is simple, because the property is either satisfied
or not. Differently, the fault tree analysis provides very rich
artifacts, and there are several techniques that allow us to
compare them and define a partial order over the different
configurations.

1) Minimal Cutsets Comparison: A common practice in
Fault Tree Analysis consists of comparing the size of cutsets
of the same cardinality. This approach is based on the intuition
that the fewer the single point of failures in the system
the higher is the overall reliability. This approach can be
extended also to the cutsets of higher cardinality e.g., double
failures. This approach provides an intuitive understanding of
the relation between different fault trees, however, it is not
always precise, since a single failure might be less probable
than a double failure.

An example of this analysis is presented in Table III, which
compares the results of the FTA on the model instances M1,
M2, and M3 (see Table I) when varying the ability to share
far intention on the GSEPs (configuration GSEP-far), with the
negation of VE-1 as TLE. In this example the number of single
point of failures does not vary for every configurations (i.e., 5),
while the number of double failures decreases when the GSEPs
share their far intentions with SSEPs aircraft. Important fact,
however, is that the number of triple failures increases when
GSEP-far is enabled. This behavior in the fault tree analysis
results is typical when adding redundant components. In fact
the idea behind redundancy is to increase the fault tolerance,
and essentially what is a single point of failure becomes a
double (or higher) failure.

Further analysis on fault trees can be performed by evaluat-
ing the minimal cutsets that are not in common. An example
of this analysis can be done by considering the configuration

TABLE III: MCS, ¬VE-1 as TLE, and GSEP-far (E/D)

Card. 3G-1S (M1) 2G-2S (M2) 1G-3S (M3)
E D E D E D

1 5 5 5 5 5 5
2 12 15 12 16 12 15
3 33 24 35 23 36 27

.

M2 in Table I, and comparing the fault trees obtained with
the TLE “there is a LoS between SSEP1 and GSEP1”, when
varying GSEP-far.

The results of this evaluation shows that if
GSEP-far is disabled then the fault configuration
FC = {G1.F comm ATC tot, S1.F comm ATC tot}
can cause the occurrence of the TLE. Differently,
when GSEP-far is enabled, FC is no more a necessary
condition to reach the TLE because the CD&R on
the SSEP is able to react to that situation. In fact, if
GSEP-far is enabled then FC requires to be combined
respectively with {ATC.F far res},{ATC.F future res},
{G1.F comm adsb}, and {S1.cdr.F future resolve,
S1.cdr.F resolve detection} to cause the occurrence of
the TLE. Thus, the enabling of GSEP-far turned a minimal
cutset of cardinality 2 into 3 cutsets of cardinality 3 and 1 of
cardinality 4.

2) Reliability Function Evaluation: A Fault Tree represents
all the faults configurations that are necessary to cause the
occurrence of the TLE. Assigning a probability of failure to
each fault event, and assuming that they are independent, it is
then possible to compute the overall probability to reach the
undesirable event. More specifically, this approach is based
on the generation of the closed form of the reliability function
presented in [20]. Such function PTLE(f1, f2, . . . , fn) relates
the probability of occurrence of the TLE with the failure
probability of each fault fi.

We formally analyze the set of possible AAC designs early
in the system design phase, before specific module implemen-
tations or probabilities of failures are fully defined. However,
we can evaluate how the reliability functions compare to each
other by analyzing different possible probability values. For
instance, if we take into account the probability of reaching
a LoS between two aircraft of the same type (for instance
GSEP1/2 and SSEP1/2 in the scenario M2), then we expect
that the failure of the ATC will affect more the GSEPs than the
SSEPs. This can be assumed considering that SSEPs aircraft
rely on ATC for strategic separation only as a backup, while
they are self-separating otherwise. However, the CD&R on-
board of the SSEPs highly depends on the ADS-B system and
its possible failure. Fig. 4 shows the result when varying the
probability of failure of the ATC (x-axes) and the ADS-B (red
lines), by keeping fixed all the other values. According to the
results, there exists a probability of ADS-B failure such that
the pure ATC-based separation assurance between two GSEPs
(blue line) is more reliable than the one implemented by the
SSEPs aircraft.

10
−4

10
−3

10
−2

10
−1

10
−3.69886

10
−3.69886

10
−3.69886

10
−3.69886

10
−3.69885

10
−3.69885

F(ATC)

P
T

L
E

LOS S−S (F(ADS−B)=10
−1.5

)

LOS S−S (F(ADS−B)=10
−1.8

)

LOS S−S (F(ADS−B)=10
−8

)

LOS G−G

Fig. 4: Reliability comparison between different aircraft types

We need to remark that the aim of this evaluation is to
provide the functions that relate probability of TLE occurrence
to the probability of failures of each component, and not the
actual values of failure probability. In fact, the outcome of
the reliability evaluation is a set of functions in Matlab format
that can be analyzed using common analytical numerical tools.
Thus, the remarkable aspect of such type of artifacts is that
they do not need to be recomputed when the real component
implementation will be defined.

VII. LESSONS LEARNED

Several subtle technical challenges must be surmounted to
complete a realistic, comparative formal analysis on a set of
scenarios.

a) Receptiveness of faults: During the fault tree analysis
we noticed that some fault configurations were not necessary
to cause the reachability of the unwanted condition e.g., LoS.
The problem was caused by a chain of relational dependencies
through the model, and under some conditions a set of faults
f1, ..., fn imposed fk to be true. Essentially, we expected both
cutsets cs = {f1, ..., fn} and cs′ = {fk} to belong to the
fault tree FT , thus being minimal cutsets. However, the model
implicitly defined the formula f1∧ ...∧fn → fk, meaning that
if cs can cause the TLE then cs ∪ cs′ ∈ FT . Clearly, cs′ is
a strict subset of cs ∪ cs′ which means that even if cs′ can
cause the occurrence of the TLE then it will not belong to FT ,
because cs′ is not minimal. The solution to this problem was
to perform specific receptiveness checks that evaluate if some
variables, in this case the fault variables, are always allowed
to be assigned to every possible value.

b) Coarse faulty behaviors: Originally, communication
faults between ATC and aircraft were not constrained to
any specific behavior. This situation caused shadowing in the
results of the fault tree analysis. For example, our modeling
considers three different time windows: near, mid, and far. For
each time window, every aircraft has a trajectory intention
and the ATC (or other CD&R components) resolves every
conflict in the intentions for every time window. Intuitively,
the objective of this design aims to describe a design where a
single communication failure in the far window will not cause

a Loss of Separation, because it will be possible to resolve
the conflict either in the mid or the near window. However,
there exists a system execution where the communication
failure causes a LoS i.e., when it is total and permanent.
In standard fault tree analysis, each extension of the cutset
{fault communication} will not be considered due to the
fact it would be not minimal. The solution to this problem
is to refine the model with an additional communication
failure, called partial, constrained to a maximum number of
occurrences thus providing a more realistic evaluation.

c) Management of multiple communication steps: This
work significantly extends the modeling methodology in [13];
for validation, we also modeled the scenario in [13] using the
modeling approach described in Sec. III in order to prove that
the additional level of detail is able to preserve the previous
model’s expressiveness. This task was important to discover
a weakness in the level of abstraction that defined commu-
nication aspects. In fact, in a previous version of the model,
the aircraft were allowed to perform a maneuver at every step
having a single possible communication step between each
maneuver. However, in [13] there is a counterexample where
multiple communications directed to an aircraft from different
separation assurance agents cause the violation of a property.
This system execution, however, is only possible if there are
more than one communication steps between each maneuver.
Thus, we explicitly allow multiple communication steps.

d) Coarse Top-Level Events: The standard fault tree
analysis is strongly characterized by the assumption that each
cutset is minimal. This assumption allows us to represent
all possible configurations in a compact and intuitive way.
However, the choice of a top-level event needs to pay par-
ticular attention to this aspect, because the results may not be
informative enough. In our analysis we performed the FTA
by providing as TLE the negation of a system requirement.
For example, our analysis of the requirement that no LoS
are allowed between any aircraft provided per se fair results,
representing all fault configurations that may cause a LoS.
However, the refinement of this top-level event, by expressing
each pairwise LoS, provided additional results that were not
taken into account previously. More specifically, we expected
that the LoS between two aircraft AC1 and AC2 can be caused
only faults that apply to AC1, AC2, and ATC. However,
this assumption was not valid in mixed operations when each
SSEP aircraft is aware that there exists an aircraft that is not
able to send the trajectory intentions through ADS-B. In this
situation a failure on the aircraft AC3 can change the behavior
of both aircraft AC1 and AC2 if they are of SSEP type. As
part of this analysis we then decided to enable the possibility
to choose if SSEPs aircraft are aware or not of ADS-B failures.
Substantially, the result of the FTA was shadowing important
details due to a too coarse definition of the TLE, so the solution
to this issue was to define fine-grained TLEs.

VIII. CONCLUSIONS AND FUTURE WORK

This case study provides a first step towards the analysis of
the Functional Allocation question. We highlighted a method-

ology and a series of tools that can be used to analyze and
compare different design solutions. In particular, we base the
comparison on a set of properties that pass in some config-
urations and fail in others, on the minimal cut sets obtained
with fault-tree analysis, and on the functional dependency of
system failure on the failure of single functions. Our approach
is efficient, compositional, and sufficiently scalable to reason
about NASA’s full-scale preliminary design space. Important
challenges for the future include considering more dimensions
of the design space, additional types of faults, and more
complex interactions between the agents of the system.

REFERENCES

[1] MITRE Corporation Center for Advanced Aviation System
Development, “Capacity needs in the national airspace system:
An analysis of airports and metropolitan aera demand and
operational capacity in the future,” tech. rep., FAA, May 2007.
http://www.faa.gov/airports/resources/publications/reports/media/fact 2.pdf.

[2] H. Erzberger, T. Lauderdale, and Y.-C. Chu, “Automated conflict
resolution, arrival management, and weather avoidance for air traffic
management,” Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of aerospace engineering, vol. 226, no. 8, 2012.

[3] T. Lauderdale, T. Lewis, T. Prevot, M. Ballin, A. Aweiss, and N. Guer-
reiro, “Function allocation for separation assurance: Research plan.”
NASA HQ Project Overview, Aug. 2014.

[4] W. Vesely, F. Goldberg, N. Roberts, and D. Haasl, “Fault tree handbook,”
Tech. Rep. NUREG-0492, Systems and Reliability Research Office of
Nuclear Regulatory Research U.S., 1981.

[5] “ARP4761 Guidelines and Methods for Conducting the Safety Assess-
ment Process on Civil Airborne Systems and Equipment, SAE,” Dec.
1996.

[6] W. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick III, and
J. Railsback, “Fault Tree Handbook with Aerospace Applications,” tech.
rep., NASA, 2002.

[7] “nuXmv: a new eXtended model verifier.” https://nuxmv.fbk.eu.
[8] xSAP: eXtended Safety Analysis Platform.

http://es.fbk.eu/tools/xsap.
[9] A. Joshi, M. Whalen, and M. P. Heimdahl, “Modelbased safety analysis:

Final report,” tech. rep., 2005.
[10] M. Bozzano, A. Villafiorita, O. Åkerlund, P. Bieber, C. Bougnol,

E. Böde, M. Bretschneider, A. Cavallo, C. Castel, M. Cifaldi, et al.,
“Esacs: an integrated methodology for design and safety analysis of
complex systems,” Proc. ESREL 2003, pp. 237–245, 2003.

[11] O. Akerlund, P. Bieber, E. Boede, M. Bozzano, M. Bretschneider,
C. Castel, A. Cavallo, M. Cifaldi, J. Gauthier, A. Griffault, et al., “Isaac,
a framework for integrated safety analysis of functional, geometrical and
human aspects,” Proc. ERTS, vol. 2006, 2006.

[12] M. Bozzano and A. Villafiorita, Design and Safety Assessment of Critical
Systems. CRC Press (Taylor and Francis), an Auerbach Book, 2010.

[13] Y. Zhao and K. Y. Rozier, “Formal specification and verification of
a coordination protocol for an automated air traffic control system,”
Science of Computer Programming Journal, vol. 96, pp. 337–353,
December 2014.

[14] H. Erzberger and K. Heere, “Algorithm and operational concept for
resolving short-range conflicts,” Proc. IMechE G J. Aerosp. Eng.,
vol. 224, no. 2, pp. 225–243, 2010.

[15] Y. Zhao and K. Y. Rozier, “Probabilistic model checking for comparative
analysis of automated air traffic control systems,” in Proceedings of the
33rd IEEE/ACM International Conference On Computer-Aided Design
(ICCAD 2014), (San Jose, California, U.S.A.), p. To appear, IEEE/ACM,
November 2014.

[16] J. Lygeros and N. Lynch, “On the formal verification of the tcas conflict
resolution algorithms,” in Decision and Control, 1997., Proceedings of
the 36th IEEE Conference on, vol. 2, pp. 1829–1834, IEEE, 1997.

[17] S. M. Loos, D. Renshaw, and A. Platzer, “Formal verification of
distributed aircraft controllers,” in Proceedings of the 16th International
Conference on Hybrid Systems: Computation and Control, HSCC ’13,
(New York, NY, USA), pp. 125–130, ACM, 2013.

[18] M. Bozzano, A. Cimatti, A. F. Pires, D. Jones, G. Kimberly, T. Petri,
R. Robinson, and S. Tonetta, “Formal design and safety analysis of
air6110 wheel brake system,” in CAV, 2015.

[19] M. Bozzano, A. Cimatti, A. Griggio, and C. Mattarei, “Efficient Anytime
Techniques for Model-Based Safety Analysis,” in CAV, 2015.

[20] M. Bozzano, A. Cimatti, and C. Mattarei, “Automated Analysis of Reli-
ability Architectures,” in 18th International Conference on Engineering
of Complex Computer Systems (ICECCS), pp. 198–207, IEEE, july 2013.

https://nuxmv.fbk.eu

	Introduction
	Functional Allocation for the Automated Air Traffic Control System
	Problem description
	Overview of the process based on formal techniques

	Formal Modeling for Comparative Analysis to Answer the Functional Allocation Question
	System Architecture
	Trajectory Intentions and Conflict Areas
	Time windows
	Scenarios Instantiation

	Validation
	Validation Properties Formalization

	Verification
	Requirements Formalization
	Formal Property Verification

	Safety Analysis
	Faults Definition
	Formal Fault Tree Analysis
	Minimal Cutsets Comparison
	Reliability Function Evaluation

	Lessons learned
	Conclusions and Future Work
	References

