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Abstract. The system design process needs to cope with the increasing complexity and size of systems, motivating the
replacement of labor intensive manual techniques with automated and semi-automated approaches. Recently, formal
methods techniques, such as model-based verification and safety assessment, have been increasingly used to model
systems under fault and to analyze them, generating artifacts such as fault trees and FMEA tables.

In this paper, we show how to apply model-based techniques to a realistic case study from the avionics domain: a
high integrity power distribution system, the Triple Modular Generator (TMG). The TMG is composed of a redundant
and reconfigurable plant and a controller that must guarantee a high level of reliability. The case study is a signifi-
cant challenge, from the modeling perspective, since it implements a complex reconfiguration policy, specified via a
number of requirements in natural language, including a set of mutually dependent and potentially conflicting priority
constraints. Moreover, from the verification standpoint, the controller must be able to handle an exponential number
of possible faulty configurations.

Our contribution is twofold. First, we formalize and validate the requirements and, using a constraint-based mod-
eling style, we synthesize a correct by construction controller, avoiding the enumeration of all possible fault configu-
rations, as is currently done by manual approaches. Second, we describe a comprehensive methodology and process,
supported by the XSAP safety analysis platform that targets the modeling and safety assessment of faulty systems.
Using XSAP, we are able to automatically extract minimal cut sets for the TMG. We demonstrate the scalability of
our approach by analyzing a parametric version of the TMG case study that contains more than 700 variables and 90
faults.

Keywords: Power Generation Systems, Model Checking, Model-Based Safety Assessment, Fault Tree Analysis,
Minimal Cut Sets.

1. Introduction

Safe operation of complex systems, in many industrial domains, relies on the ability to provide continuous and reliable
electrical power. For instance, in avionics, reliable electrical generators are essential to ensure safe operation of aircraft.
Power systems are subject to critical requirements, since they have to ensure correct operation even in non-nominal
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situations (in presence of faults). This has led to the adoption of complex redundant architectures (for the plant and for
the controller), resulting in a significant increase in the complexity of their analysis and safety assessment. The More
Electric Aircraft (MEA) concept [Ray18] has made all these issues even more serious.

Similar remarks apply to the electrical power industry. Distribution systems are designed for redundancy, e.g.
they are connected to multiple power sources and they exploit redundant paths to guarantee reliability/ availability of
power delivery to customers. Recent concepts include the use of the distributed generation sources and “self-healing”
grid [ea10]. Microgrids [KIHD08] provide an additional example of systems that need to implement complex design
requirements. Their architecture typically supports a fine-grained load management, local control of power generation,
and the possibility to operate connected or disconnected from the main grid. The complexity of the design of these
systems requires sophisticated capabilities to monitor and control the power sources and the loads, and to effectively
diagnose and recover from faults (e.g., by isolating faulty parts of the grid).

The design, verification, safety assessment and operational control of these systems is a highly labor intensive
and error-prone activity, encouraging automated and formally-verifiable techniques. The growing interest of industry
in applying formal methods is justified by the growing complexity of the systems to be analyzed, and by the high
degree of assurance that is required for their deployment. Recent trends in this areas include the application of the
Model-Based Safety Assessment (MBSA) paradigm [BVÅ03, JMWH05, BV10]. In MBSA, design and safety engi-
neers share the same system models. Faulty behaviors can be automatically injected into the nominal models, and
the resulting extended models can be analyzed automatically by means of exhaustive techniques, e.g. based on model
checking [BCC+03, BCK+14, BCP+15].

In this paper we demonstrate the application of MBSA to a realistic industrial case study: the TMG (Triple Modular
Generator). The TMG is a redundant on-board power distribution system (including generators, buses and circuit
breakers) that implements a complex reconfiguration policy, whose goal is to provide continuous power to buses,
insofar as possible. The case-study is composed of a plant representation and a set of informal, complex requirements
that express the expected behavior of the overall system (plant, controller). Specifically, a complex priority scheme
constrains the available powering options (alternative generator-bus paths) that can be used by the controller to achieve
the goal. Furthermore, priority requirements are mutually dependent, namely powering options for different buses
may be conflicting and need to be resolved. The case-study was chosen to be comparable in complexity to the high
voltage power systems of many previous generation aircraft, although details of the architecture may vary. For such
systems, the control strategy could be manually synthesized by enumerating all the possible faulty configurations
(determined by the possible fault combinations of the different components), however this approach would become
rapidly unmanageable, due to the exponential number of such configurations.

The purpose of this work is to describe a comprehensive approach, based on formal methods, that can be applied
to the modeling of the system, the formalization of the requirements and the formal verification and validation of the
system characteristics. The approach is supported by the XSAP toolset [BBC+16, xSA19], which provides a broad
set of techniques covering all of the steps of formal modeling and assessment. Using XSAP, we are able to verify
and validate the requirements expressing the expected behavior of the system, synthesize a formal implementation
of the controller that meets such requirements, and evaluate its reliability. The synthesis of the controller relies on a
constraint-based formalization, which avoids the explicit enumeration of the faulty configurations.

Our contribution is twofold. First, we model and fully analyze a significant case study. The modeling of the
system, in particular of the controller priority scheme, is non-trivial. We thoroughly explain how to model prioritized
requirements and control laws for a closed loop system with potentially conflicting conditions. Our style of modeling
is very general, and can be adapted to similar case studies. Moreover, the case study we present has size 3 (namely,
there are 3 buses, 3 generators, and 6 circuit breakers) for explanatory purposes, but the experiments are carried over
to way larger models, up to size 18 (the latter model has more than 700 variables and 90 possible faults). The second
contribution is a comprehensive presentation of the XSAP process and tool, along with the underlying techniques.
The automated extraction of results is made possible and effective thanks to the scalability of the mature techniques
implemented in the tool, namely fault tree analysis via parameter synthesis and anytime computation [BCMG15].

The rest of this paper is organized as follows. In Section 2 we present some background. In Section 3 we present
the TMG case study. In Section 4 we present the XSAP process and tool. In Section 5 we illustrate the modeling of
the TMG. In Section 6 we discuss formal verification and safety assessment. In Section 7 we discuss diagnosability
and fault detection and identification analysis. In Section 8 we describe the experimental evaluation. In Section 9 we
discuss related work. Finally, in Section 10 we draw some conclusions and discuss future work.
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2. Background

In this section we introduce some notions that we use in the rest of the paper. First, we introduce the notion of
symbolic transition system, which we use to represent systems and their evolution (both with and without faults).
Symbolic transition systems are amenable to formal verification using tools such as XSAP. We introduce temporal
logic, which is used to express properties over transition systems, and symbolic model checking.

2.1. Symbolic Transition Systems

In this paper we represent systems symbolically as symbolic transition systems (STS).
An STS is a tuple S = 〈V, Vo,W,Wo, F, I, T 〉, where:

• V is the set of state variables;
• Vo ⊆ V is the set of observable state variables;
• W is the set of input variables;
• Wo ⊆W is the set of observable input variables;
• F ⊆W is the set of faults;
• I is a formula over V defining the initial states;
• T is a formula over V ,W , V ′ (with V ′ being the next version of the state variables) defining the transition relation.

In the context of this paper, we assume that variables range over finite domains1. A state s is an assignment to
the state variables V . We denote with s′ the corresponding assignment to V ′. An input i is an assignment to the input
variables W . Given a state s and a Boolean variable p ∈ V , we write s |= p if s(p) is assigned to true. Given a state s
and a set of variables V , we denote with s|V the restriction of s to the variables in V ; similarly for inputs.

The observable part obs(s) of a state s is the projection of s on the subset Vo of observable state variables. The
observable part obs(i) of an input i is the projection of i on the subsetWo of observable input variables. Thus, obs(s) =
Proj(s, Vo) and obs(i) = Proj(i,Wo). A trace of S is an infinite sequence (i.e., a path) π = s0, i1, s1, i2, s2, . . .
of states and inputs such that s0 satisfies I and, for each k ≥ 0, 〈sk, ik+1, sk+1〉 satisfies T . We write ΠS for the
set of traces of S. The observable part of π is obs(π) = obs(s0), obs(i1), obs(s1), obs(i2), obs(s2), . . .. Given a trace
π = s0, i1, s1, i2, s2, . . . and an integer k ≥ 0, we denote with πk the finite prefix s0, i1, . . . , sk of π containing the
first k + 1 state-input pairs. We denote with π[k] the k + 1-th state sk. We say that s is reachable (in k steps) in S
if and only if there exists a trace π ∈ ΠS such that s = π[k] for some k ≥ 0. We say that the transition relation is
total if and only if for each state s there exists a successor state for some input i, that is, ∀s∃i, t such that T (s, i, t) is
valid. Without loss of generality, in the following we assume that a system is total, and consider infinite traces only.
We say that S is deterministic if there are no two initial states s0 and s′0 s.t. obs(s0) = obs(s′0), and there are no two
transitions 〈s, i1, s′1〉 and 〈s, i2, s′2〉 from a reachable state s s.t. obs(i1) = obs(i2) and obs(s′1) = obs(s′2).

Let S1 = 〈V 1, V 1
o ,W

1,W 1
o , F

1, I1, T 1〉 and S2 = 〈V 2, V 2
o ,W

2,W 2
o , F

2, I2, T 2〉 be two transition systems with
∅ = (V 1\V 1

o )∩V 2 = V 1∩(V 2\V 2
o ) = (W 1\W 1

o )∩W 2 = W 1∩(W 2\W 2
o ). We define the synchronous composition

S1 × S2 as the transition system 〈V 1 ∪ V 2, V 1
o ∪ V 2

o ,W
1 ∪W 2,W 1

o ∪W 2
o , F

1 ∪ F 2, I1 ∧ I2, T 1 ∧ T 2〉.

2.2. Temporal Logic

In this paper we use Linear Temporal Logic (LTL) extended with past operators and Computation Tree Logic (CTL) [Pnu77,
LMS02, LPZ85, AE90, Var01] .

A formula in LTL over variables V is defined as

β ::= p | β ∧ β | ¬β| Oβ | Y β | Gβ | Fβ | Xβ | βUβ
where p is a propositional variable. Given a trace π = s0, i1, s1, i2, s2, . . . and an index i, the semantics of LTL is
defined on linear traces as follows:

- π, i |= p iff si |= p;
- π, i |= β1 ∧ β2 iff π, i |= β1 and π, i |= β2;

1 Without loss of generality, we can assume that variables are Boolean, since finite-domain variables can be encoded using Boolean ones.
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- π, i |= ¬β iff π, i 6|= β;
- Once: π, i |= Oβ iff ∃j ≤ i. π, j |= β;
- Yesterday: π, i |= Y β iff i > 0 and π, i− 1 |= β;
- Globally: π, i |= Gβ iff ∀j ≥ i. π, j |= β;
- Finally: π, i |= Fβ iff ∃j ≥ i. π, j |= β;
- Next: π, i |= Xβ iff π, i+ 1 |= β;
- Until: π, i |= β1Uβ2 iff there exists j ≥ i such that π, j |= β2 and for all k, i ≤ k < j, π, k |= β1.

Given an LTS S = 〈V, Vo,W,Wo, F, I, T 〉, we write S |= β if and only if for every trace π of S, π, 0 |= β. Notice that
Y β is always false in the initial state, and that we use a reflexive semantics for the operators U , F ,G, S andO. We use
the abbreviations Y nβ = Y Y n−1β (with Y 0β = β),O≤nβ = β∨Y β∨· · ·∨Y nβ and F≤nβ = β∨Xβ∨· · ·∨Xnβ.

CTL is similar to LTL, but every temporal operator is preceded by a path quantifier. A formula in CTL over
variables V is defined as

β ::= p | β ∧ β | ¬β| EGβ | EFβ | EXβ | EβUβ |

where p is a propositional variable.
CTL properties are evaluated over states(i.e., over the trees that start from such states). Formally, Given an LTS

S = 〈V, Vo,W,Wo, F, I, T 〉 and a state s:

- S, s |= p iff s |= p;
- S, s |= β1 ∧ β2 iff S, s |= β1 and S, s |= β2;
- S, s |= ¬β iff S, s 6|= β;
- Exists Globally: S, s |= EGβ iff there is a path π = s0, i1, s1, i2, s2, . . . such that s0 = s and for all j ≥ 0,
S, sj |= β;

- Exists Finally: S, s |= EFβ iff there is a trace π = s0, i1, s1, i2, s2, . . . such that s0 = s and for some j ≥ 0,
S, sj |= β;

- Exists Next: S, s |= EXβ iff there is a trace π = s0, i1, s1, i2, s2, . . . such that s0 = s and S, s1 |= β;
- Exists Until: S, s |= Eβ1Uβ2 iff there is a path π = s0, i1, s1, i2, s2, . . . such that s0 = s and for some j ≥ 0,
S, sj |= β2 and for all 0 ≤ k < j, S, sk |= β1.

The universal quantifier A can be defined as an abbreviation, e.g. AGβ := ¬EF¬β.

2.3. Symbolic Model Checking

Given a (symbolic) transition system S and a temporal logic formula β, model checking is an automated, formal
verification technique whose goal is to verify whether the system S satisfies the specification β, written S |= β. Model
checking implements this verification by performing an exhaustive exploration of the state space of the given system,
thus covering every possible system behavior. Termination of the model checking routines is guaranteed in case of
finite state models. Model checking also provides the designer with useful information in case a specification is not
satisfied, namely it generates a counterexample trace witnessing the violation.

Traditionally, model checking has been approached in different ways, in particular older routines are based on the
explicit representation of the states of system (so-called explicit state model checking). A more recent advance is the
introduction of symbolic model checking [McM93]. In this approach, sets of states and transitions are represented and
manipulated symbolically, using efficient logical representations, such as Ordered Binary Decision Diagrams [Bry92]
(BDDs). An even more recent advance is the use of SAT solvers and the introduction of bounded model checking
(BMC) [BCRZ99, Bra11, CGMT13].

Examples of state-of-the-art model checkers are NUSMV [CCGR00, NuS19] and NUXMV [CCD+14, nuX19].
The XSAP platform builds upon the NUXMV model checker, inheriting its model checking capabilities for veri-

fication and validation, while implementing specialized routines for safety assessment, based on extensions of model
checking. Both BDD-based and SAT-based routines are available. In particular, in this paper we use the IC3-based
routines described in [BCMG15]. Diagnosability, Fault Detection and Identification capabilities are based on the
framework described in [BCGT14, BCGT15] and are also implemented using techniques based on model checking.
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Fig. 1. Triple Modular Generator.

ID Description
R1 No bus shall be connected to more than one power source at any time.
R2 If any power source is on, then all buses will be powered.
R3 Bus power source priority and source to bus path priority schemes shall be respected at all times

(see Fig. 3 and 4).
R4 If no power source is on, then all buses will be unpowered.
R5 Any single/dual component failure shall not cause other system requirements to be violated.
R6 Never more than two generators are on, unless required in case of failures.

Fig. 2. TMG Requirements.

3. The Triple Modular Generator (TMG)

The Triple Modular Generator (TMG) is a redundant on-board power distribution system. Its complexity is comparable
to the high voltage power systems of many current generation aircraft, although the specific architecture may vary.

The TMG system, illustrated in Fig. 1, is composed of:

• Generators (G1, G2 and G3): they act as power sources, they have an output connection and may have two possible
states: ON (the generator provides AC power to the output connection) and OFF (the generator is switched off).

• Circuit Breakers (GB1, GB2, GB3, BB1, BB2 and BB3): they have an input and an output connection and may have
two possible states: OPEN (the circuit is open, i.e. the input connection is isolated from the output connection)
and CLOSED (the circuit is closed, i.e. the input connection is electrically connected to the output connection).

• Buses (B1, B2 and B3): they represent the loads of the system. They receive power from one of their input con-
nections, and they propagate it to the other two ports.

Moreover, a Controller (not shown in Fig. 1) is connected in closed-loop with the system, and it is responsible for
monitoring the system and carrying out re-configuration, if needed due to the presence of faults. To this aim, it can
send commands to generators and circuit breakers.

In the nominal case (no faults) only one generator is active, and all buses are powered. The TMG system has
several degrees of redundancy (triple redundancy scheme): backup generators may take over as power sources, in case
of failure of the primary generator; moreover, each bus may be powered using alternate power connections, in case of
failure of circuit breakers. Requirements are imposed on the controller, prescribing priorities on the way buses should
be fed (i.e., on the bus and power line to be used).

Faults of the TMG The TMG components may fail in the following ways:

• Generators can fail off permanently (‘stuck-at-off’ fault). In this case, a generator does not provide output power.
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BUS High priority Medium priority Low priority
B1 G1 G2 G3
B2 G2 G1 G3
B3 G2 G1 G3

Fig. 3. Bus power source priority.

Paths Priority B1 B2 B3

G1 High — BB1 BB3
Low — BB3-BB2 BB1-BB2

G2 High BB1 — BB2
Low BB2-BB3 — BB1-BB3

G3 High BB3 BB2 —
Low BB2-BB1 BB3-BB1 —

Fig. 4. Source to bus path priority.

• Circuit breakers can fail open or closed, possibly transiently (‘stuck-at-open’ and ‘stuck-at-closed’ faults). In this
case, the corresponding circuit is, respectively, open or closed.

• Buses may fail (short circuit) if they are powered simultaneously from two (or more) input connections. In this
case, a bus becomes broken permanently.

Faults of generators and circuit breakers are primitive faults (random faults due to, e.g., wearing out), whereas bus
faults are induced faults (e.g., due to controller errors). A requirement is imposed on the controller to avoid bus shorts.

The controller can monitor the state of the components using some sensors, and can send commands to the gener-
ators (switch-on, switch-off) and to the circuit breakers (open, close).

Requirements of the TMG Controller The goal the TMG controller is to ensure, insofar as possible, that all the
buses are always powered, even in presence of faults. To achieve this goal, the controller monitors the system and can
send commands to the generators and the circuit breakers, as appropriate. The controller has also to satisfy a set of
additional requirements. The full list of requirements is shown in Fig. 2, and their intended purpose is described as
follows:

R1 avoids bus shorts, which occur when a bus is connected simultaneously to more than one power source.
R2 states that one generator is sufficient to power all the buses. Notice that this requirements may be violated in case

of multiple faults.
R3 prescribes priorities on the ways buses should be powered, namely which generator and which path (power line)

should be used.
R4 expresses that the generators are the only source of power in the system.
R5 requires the system to be resilient to single and double faults.
R6 states that at most two generators should be on at any time unless, due to faults, three generators are necessary (to

power the buses).

Bus power source priority and source to bus path priority schemes are described in Fig. 3 and Fig. 4. For instance,
bus B1 (first row in Fig. 3) must be powered with highest priority using generator G1, if not possible using G2
(medium priority) or G3 (lowest priority). When powered by G1, bus B1 should be powered directly (i.e., using GB1,
indicated as —, see first row in Fig. 4); when powered by G2, B1 should be powered with highest priority using
the path going through (GB2 and) BB1, and with lowest priority using the path through (GB2 and) BB2-BB3. The
remaining cases are similar.

4. Modeling and Analysis Process Using XSAP

In this section we discuss the modeling and analysis process supported by XSAP.XSAP is platform for Model-Based
Safety Assessment [BBC+16, xSA19], implementing a variety of modeling and analysis techniques that automate
activities that are traditionally performed manually. Specifically, supported techniques include, among others:
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Fig. 5. XSAP Modeling and Analysis Process.

• Definition of faults and Model Extension: automatic extension of a system model with the definition of fault modes.
Typical fault modes (e.g., ‘stuck at’) can be defined for reuse in a common library, and system components can be
independently annotated for extension, to include one or more fault modes.

• Fault Tree Analysis (FTA): automated generation of minimal cut sets and fault trees from an extended model.
• Failure Modes and Effects Analysis (FMEA): automated generation of FMEA tables from an extended model.
• Common Cause Analysis: analysis of events that may invalidate the hypothesis of independence of faults (e.g.,

cascading faults).
• Diagnosability Analysis, Fault Detection and Identification Analysis: evaluation of the adequateness of the level

of observability (e.g., sensor allocation) of a system for the purpose of diagnosing faults, and the adequateness of
an existing diagnoser.

4.1. xSAP Process

The XSAP process is illustrated in Fig. 5. It supports a unifying methodology that covers both modeling and verifica-
tion of safety critical systems. The main steps of the process are:

Modeling nominal behavior The nominal model describes the behavior of a given system, when everything works as
expected (absence of faults). The model can be written using the provided editors, and is an input for the following
phases of model extension and functional verification. The model is written in the SMV language.

Model extension Model extension is performed to enrich the nominal model with the specification of the possible
faults, that may affect the behavior of the system. The result of model extension is called extended model (i.e.,
nominal model extended with faulty behaviors). Model extension can be performed either manually or automati-
cally. In the first scenario, the model is written manually, and XSAP provides primitives to declare fault variables
(i.e., input variables controlling the triggering of faults) in the extended model. In the second scenario, model ex-
tension is carried out automatically by XSAP, taking as input some fault templates (retrieved from a fault library),
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and fault extension instructions (i.e., directives that specify how to instantiate the fault templates and how to link
the faults with their effects on the nominal model). Similarly to the nominal model, the extended model is written
in the SMV language.

Modeling requirements The goal of this step is the elicitation and specification of system requirements. Different
typologies of requirements may be covered, e.g. functional requirements, safety requirements, performance re-
quirements, etc.

Functional verification Functional verification has the goal to assess the operational correctness of a given system.
It consists in verifying that the system will operate correctly with respect to a set of requirements. Functional
verification can be performed both on the nominal model and on the extended model (to assess the behavior of the
system in nominal conditions or in presence of faults).

Safety assessment Safety assessment has the goal to assess the robustness of a given system in presence of faults.
Safety assessment of critical systems is typically performed in parallel with system design, to ensure that the
system meets the safety requirements that are necessary for its deployment and use. The assessment is carried out
with respect to a set of safety requirements, describing, e.g., the level of tolerance with respect to faults, and the
maximum probability that is acceptable for undesired events. Key techniques in this area are Fault Tree Analysis
(FTA), Failure Modes and Effects Analysis (FMEA), and Common Cause Analysis (CCA).

Diagnosability, fault detection and identification analysis Critical systems are designed to be fault tolerant, i.e.
they must preserve safety in presence of faults (fail-safe), or even be able to operate in presence of faults (fail-
operational). Fault tolerance typically requires proper architectural design choices (e.g., redundant architectures)
and mechanisms to detect (and recover from) faults during operation. Fault Detection and Identification (FDI)
analysis has the goal to assess the capabilities of the fault detection and identification mechanisms at design time.
Moreover, diagnosability analysis has the goal to evaluate the adequateness of the level of observability (e.g.,
sensor availability and allocation) for the purpose of diagnosing faults.

The steps of the process are illustrated in detail in Sections 5–7, where they are exemplified on the Triple Modular
Generator (TMG) system.

4.2. The XSAP tool

XSAP is built on top of the NUXMV symbolic model checker [CCD+14, nuX19]. NUXMV is an extension of the
NUSMV model checker implementing, among others, state-of-the-art techniques for verification of finite- and infinite-
state systems, based on SAT (Satisfiability) and SMT (Satisfiability Modulo Theory). XSAP inherits from NUSMV
and NUXMV its input language (i.e., SMV).

XSAP relies on an interaction shell similar to the one of NUXMV, which increases the flexibility and possibility of
integration within other tools. XSAP provides a trace viewer and a fault tree viewer to display the generated artifacts
graphically. Moreover, it provides Syntax Directed Editors (SDEs) for editing models and other input files. XSAP has
been developed in C and in C++ for the internal modules, while Python is used for model extension.

XSAP is available for the Linux and MS Windows operating systems. It is distributed under a free license for
non-commercial applications or for academic purposes. Custom licensing schemas for industrial usage are possible.
The distribution page [xSA19] contains download forms, documentation (including the user manual) and various other
resources.

This paper is based on version 1.3.0 of XSAP, released on October 2, 2019.

5. Modeling of the TMG

In this section, we discuss modeling of the TMG, following the XSAP process illustrated in Section 4. We cover
the modeling of the nominal behavior, the model extension, the modeling of the controller, and the modeling of
the requirements. We also include a general description of the model extension process and the fault libraries, as
implemented in XSAP.



Model-based Safety Assessment of a Triple Modular Generator with XSAP 9

5.1. Modeling Nominal Behavior of the TMG

In the rest of the paper we describe in detail the modeling and verification flow of XSAP and we illustrate it on the
TMG case study. We discuss the different steps of the process, and the results on the case study. In this section, we start
with modeling the nominal behavior of the TMG2, which is done using the SMV language. We describe the model
structure and the modeling of the basic components, while the controller definition is discussed in detail in Section 5.4.

The model of the system is shown in Fig. 6 and it contains two main blocks: SC (System Configuration), containing
the system components (generators, circuit breakers and buses) and CN (Controller), implementing the monitoring
and control part of the system. For simplicity, we do not show the buses, since their state is fully determined by the
state of the other components (we will come back to this point later). For modeling convenience, multiple signals
are grouped into arrays of signals when propagated from/to the SC and the CN blocks. The skeleton of the model
in SMV, corresponding to Fig. 6, is shown in Listing 1. Blocks are implemented as SMV modules. An SMV module
called main acts as a container and instantiates the SC and CN modules. Notation ‘cmd Gs[index G1]’ indicates array
selection and corresponds to ‘cmd G1’ (similarly for the other generators and circuit breakers).

System Configuration

The System Configuration block contains the generators (G1, G2 and G3) and the circuit breakers (GB1, GB2, GB3,
BB1, BB2 and BB3). Buses (B1, B2 and B3) are omitted, as previously mentioned.

Generators

Each generator takes as input a command (from the Controller) and an initialization signal. Initialization values are
provided as a list of constants in the SC module and localized in one declaration section – this makes it easier to
modify the initial state of the system, if needed. Moreover, each generator declares two input events, one failure event
(fev off) and one nominal (repair) event (nev), representing failures and repairs that may affect a generator3. The logic
of a generator is implemented in the corresponding module (see Listing 2). A generator has an internal state which is
either on or off. State changes are commanded by the Controller via the input command cmd, which can take values
cmd on, cmd off or nop; in the latter case, the state does not change.

Circuit Breakers

Similarly to generators, circuit breakers take as input a command from the Controller and an initialization signal.
Similarly, they declare two failure events (fev closed, fev open) and one nominal (repair) event (nev). Each circuit
breaker (see Listing 3) has an internal state that may change if commanded by the Controller via the input command
cmd, which can take values cmd closed, cmd open or nop; in the latter case, the state does not change.

Buses

The System configuration block also contains the buses (not shown in Fig. 6, for simplicity). The logic of a bus is
displayed in Listing 4. We abstract away the functional behavior of a bus, since the only piece of information which
is relevant for our purposes, is whether a bus is powered, and by which input connection (each bus has three of them).
Consequently, each bus takes as input three Boolean values (true if and only if the bus is powered by the corresponding
input connection). Moreover, a bus has an internal state which may be either working or broken. The state is initially
working, and becomes broken in case the bus is powered simultaneously by two or more connections. If broken, a
bus remains broken permanently. A bus is powered if it is working, and it is being powered by exactly one input
connection.

Controller and Monitor

The Controller block contains one sub-component MN (Monitor), whose goal is to estimate the state of the system.
The Monitor takes as input the commands from the Controller, the events and the initialization signals (for generators

2 The model is available in the XSAP distribution under examples/fe/triple modular generator.
3 In the nominal model these events are disconnected; they get connected as a result of the model extension phase, which associates them with the
fault and repair events generated by the fault models (compare Section 5.2 and Section 5.3).
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Fig. 6. Architecture of the TMG Model.
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1MODULE main
2 VAR
3 CN : Controller Synth(SC.event Gs, SC.event CBs, SC.init Gs, SC.init CBs);
4 SC: System Configuration(CN.cmd Gs, CN.cmd CBs);
5
6MODULE System Configuration(cmd Gs, cmd CBs)
7 VAR
8 G1 : Generator(cmd Gs[index G1], init G1);
9 G2 : Generator(cmd Gs[index G2], init G2);
10 G3 : Generator(cmd Gs[index G3], init G3);
11 GB1 : Switch(cmd CBs[index GB1], init GB1);
12 GB2 : Switch(cmd CBs[index GB2], init GB2);
13 GB3 : Switch(cmd CBs[index GB3], init GB3);
14 BB1 : Switch(cmd CBs[index BB1], init BB1);
15 BB2 : Switch(cmd CBs[index BB2], init BB2);
16 BB3 : Switch(cmd CBs[index BB3], init BB3);
17
18MODULE Controller Synth(event Gs, event CBs, init Gs, init CBs)
19 VAR
20 MN : Monitor(event Gs, event CBs, cmd Gs, cmd CBs, init Gs, init CBs);

Listing 1. TMG Model Structure in SMV.

1MODULE Generator(cmd, init state)
2 VAR
3 state : {on, off};
4 IVAR
5 fev off : boolean;
6 nev : boolean;
7 DEFINE
8 is on := (state = on);
9 is off := (state = off);
10 ASSIGN
11 init(state) := init state;
12 next(state) :=
13 case
14 (cmd = cmd on) : on;
15 (cmd = cmd off) : off;
16 TRUE : state;
17 esac;

Listing 2. Generator.

1MODULE Switch(cmd, init state)
2 VAR
3 state : {open, closed};
4 IVAR
5 fev closed : boolean;
6 fev open : boolean;
7 nev : boolean;
8 DEFINE
9 is open := (state = open);

10 is closed := (state = closed);
11 ASSIGN
12 init(state) := init state;
13 next(state) :=
14 case
15 (cmd = cmd open) : open;
16 (cmd = cmd closed) : closed;
17 TRUE : state;
18 esac;

Listing 3. Circuit Breaker.

1MODULE Bus(in1, in2, in3)
2 VAR
3 state : {working, broken};
4 DEFINE
5 is broken := (state = broken);
6 is powered := (state = working) &
7 (count((in1), (in2), (in3)) = 1);
8 ASSIGN
9 init(state) :=
10 case
11 (count((in1), (in2), (in3)) > 1) : broken;
12 TRUE : working;
13 esac;
14 next(state) :=
15 case
16 next((count((in1), (in2), (in3)) > 1)) :
17 broken;
18 TRUE : state;
19 esac;

Listing 4. Bus.

and circuit breakers) coming from the System Configuration Block. These inputs are necessary to correctly estimate
the state of the individual components and predict the next state. Note that the events represent internal faults (or
repairs) of components (compare Footnote 3), hence they may affect the state of the system. The Controller relies on
the Monitor to decide the next target state of the system and decide the commands that have to be sent to individual
components in order to reach the target state. The Controller and Monitor blocks represent the core of the SMV model
of the TMG; their implementation is described later in Section 5.4.

For simplicity, we assume that the Monitor can directly observe faults (and repairs) of components via the corre-
sponding events. This style of modeling can be generalized by adding a set of sensors to the model, and requiring that
the monitor can only get information from the sensors, rather than observing the events directly. The extension of the
model with observability information is discussed later in Section 7.1.

5.2. Model Extension in XSAP

The process of specifying the set of possible faults and extending the nominal model with such specification is called
model extension. The result of model extension is the extended model, i.e., a model, written in SMV, including the spec-
ification of the faulty behaviors. XSAP supports either manual and automatic model extension. In the first scenario,
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Fig. 7. Automatic model extension.

Name Parameters Transitions
Entering During

StuckAtByReference I term next(varout) = next(term) next(varout) = next(term)
StuckAtByReference D term next(varout) = term next(varout) = term

StuckAtByValue I term next(varout) = next(term) next(varout) = varout
StuckAtByValue D term next(varout) = term next(varout) = varout

StuckAtFixed —– next(varout) = varout next(varout) = varout

Fig. 8. Some sample XSAP effects models; column ‘Parameters’ lists the template parameters other than ‘input’ and
‘varout’ that are common to all templates.

the model is written manually, and XSAP provides primitives to declare fault variables that control the triggering of
the faults. The effects of the faults on the system behavior is encoded manually in the extended model.

In this paper we focus on automatic model extension. In this case, XSAP enables the specification of the faults
and their dynamics, by retrieving their definition from a library. Based on the fault specification, the extended model is
generated automatically. The effects of the faults on the system behavior are specified in the library and inserted in the
nominal model as part of the model extension process. Automatic model extension is illustrated pictorially in Fig. 7.

In the following we illustrate the model extension process more in detail, in particular we describe how to model
faults using the fault library, we present the fault extension instructions and discuss how the nominal model is modified
with the fault specifications.

5.2.1. Modeling Faults: The Fault Library

The fault library contains fault templates for the most common fault definitions. The library contains two different
sets of templates (called effects models and dynamics models) to define fault effects and fault dynamics. Fault effects
specify how the affected part of the system model changes due to the presence of faults, whereas fault dynamics
specify how the presence of the fault changes over time (e.g., whether it is a permanent fault, or it can be repaired).
The library is extensible and customizable – new templates can be added by the user.

Effects Models Fig. 8 shows a sample list of the XSAP templates for effects models. Specifically, it lists a few variants
of the ‘StuckAt’ template. Fault ‘StuckAt’ specifies that a given variable become stuck as a result of the fault. Each
template, by default, has parameters ‘input’ and ‘varout’ (respectively, an input and an output parameter; ‘varout’ is
the name of the variable which is affected by the fault). Moreover, templates may have additional parameters, e.g., all
templates in Fig. 8 except the last one, have an additional parameter ‘term’ (the term at which ‘varout’ becomes stuck;
it may be a constant or a variable).

The two rightmost columns in Fig. 8 specify the fault effect when entering the faulty state (‘Entering’) and while
staying in the faulty state (‘During’). There are two main variants of the ‘StuckAt’ template called ByReference and
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1<effects model name=”StuckAtByValue D”>
2 <values>
3 <input reads=”term” type=”Any” desc=
4 ”The value at which the output has to be stuck.”/>
5 <output writes=”varout” reads=”input” desc=
6 ”The output variable name that reads on the input one”/>
7 </values>
8 <effect>
9 <entering type=”smv”>entering.smv</entering>
10 <during type=”smv”>during.smv</during>
11 </effect>
12 <raw/>
13</effects model>

Fig. 9. Effects model for a ‘StuckAtByValue D’ fault mode.

ByValue. They have the same effect when entering the faulty state (‘varout’ gets stuck at ‘term’), but they differ in the
specification of the ‘During’ effect: in the call-by-reference case, ‘varout’ follows ‘term’, whereas in the call-by-value
case, it keeps the ‘Entering’ value (note that the two cases coincide, if ‘term’ is a constant). Furthermore, there are two
variants (suffix ‘I’ and suffix ‘D’ – which stand for ‘Instantaneous’ and ‘Delayed’) of the fault template. In the first
case, the fault effect propagates instantaneously, whereas in the second case it is applied with a one-step delay (i.e.,
the next value of ‘varout’ is computed based on the current value of ‘term’). The template ‘StuckAtFixed’ is a special
case where ‘varout’ gets stuck at its value at the time the fault occurs.

As an example, Fig. 9 (left) shows the definition of the ‘StuckAtByValue D’ fault template in the library. The
template comes as a file (in xml format) which makes reference to separate files (in SMV format, and also part of the
library) containing the definitions of the ‘Entering’ and ‘During’ constraints. Semantically, the fault template defines
the state machine shown in Fig. 9 (right), where the ‘Entering’ and ‘During’ constraints are shown as labels of the
transitions between the nominal and faulty state4.

XSAP provides a few additional fault templates, and several variants thereof, that specify the most common fault
effects. For instance, additional templates include ‘NonDeterminism’ (a numerical variable gets a non-deterministic
value within two bounds); ‘Conditional’ (a variable gets linked to one out of two terms, depending on a Boolean
condition evaluated at the time the fault occurs); ‘RampDown’ (a numerical variable is decremented by a fixed amount
at each transition); ‘Random’ and ‘Erroneous’ (a variables gets a random value in its domain, in the second case it
is required to be different from the current value); ‘DeltaOut’ (a numerical variable gets displaced w.r.t. its nominal
value by a given interval).

Dynamics Models The XSAP templates for dynamics models define the dynamics of the fault. Semantically, they
define a state machine describing the transitions from the nominal state and the faulty state. For instance, in the case
of a permanent fault, we have a transition from the nominal state to the faulty state, and a self-loop on the faulty
state. In case of a transient fault with self-repair, we add a (non-deterministic) transition from the faulty state back to
the nominal state. XSAP provides a few templates for the dynamics models, including ‘Permanent’, ‘Transient’ and
‘SelfFixWithCounter’ (a fault may repair itself spontaneously after a given amount of time)5.

As an example, Fig. 10 (left) shows the definition of the dynamics model for a transient fault with self repair in
the library. Similarly to the effects model, the template comes as a file (in xml format) and defines the state machine
shown in Fig. 10 (right). The transitions in the state machine define the events that cause a change of state. The failure
event is a default event that models the occurrence of the fault (transition from the nominal state to the faulty state),
whereas the self fix event controls whether the repair non-deterministically takes place (transition from the faulty state
back to the nominal state) or whether the fault persists (self-loop on the faulty state; ‘!’ is the negation operator in
SMV).

Global Dynamics Model When multiple faults are specified in the same slice, the state machines for the dynamics
models of different faults are semantically composed in the following way. The composed state machine has one
nominal state which corresponds to sharing the nominal states of the individual state machines. Faulty states of the

4 In general, the definition of the ‘Entering’ and ‘During’ constraints consists of a generic SMV code snippet, making it possible to define arbitrary
effects.
5 The definition of the dynamics model may refer to an additional generic SMV code snippet, which may be used to define arbitrary dynamics. For
instance, in the case of the ‘SelfFixWithCounter’ template, the SMV code defines a counter that is used to trigger the repair transition.
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1<local dynamics model name=”Transient”>
2 <templates>
3 <template name=”self fix” type=”Identifier”>
4 </template>
5 </templates>
6 <events>
7 <event type=”output” name=”failure”/>
8 <event type=”output” name=”self fix”/>
9 </events>
10 <transitions>
11 <transition from=”nominal” to=”fault”>
12 <trigger>failure</trigger>
13 </transition>
14 <transition from=”fault” to=”fault”>
15 <guard>!self fix</guard>
16 </transition>
17 <transition from=”fault” to=”nominal”>
18 <trigger>self fix</trigger>
19 </transition>
20 </transitions>
21 <raw/>
22</local dynamics model>

Fig. 10. Dynamics model for a transient fault with self repair.

Fig. 11. An example of global dynamics model.

individual state machines are kept separate. For instance, consider two faults ‘stuck-at-closed’ and ‘stuck-at-open’ that
affect the same component. Each of these two faults semantically defines the state machine shown in Fig. 10 (right).
Composing the two states machines semantically yields the state machine shown in Fig. 11, called global dynamics
model, where the two faulty states and transitions are renamed and duplicated6. The rationale of this construction is
that different faults for the same component are considered independent (e.g., the ‘stuck-at-closed’ and ‘stuck-at-open’
faults are considered independent)7.

5.2.2. Fault Extension Instructions

The fault extension instructions consist in directives that, for a given nominal model, specify which faults are to be
injected into the model, and how the fault templates have to instantiated (i.e., they instantiate the parameters required
by the template with actual parameters from the nominal model). Fault extension instructions are specified using an
ad-hoc user-readable language called FEI language. The grammar of the language is documented in the XSAP user
manual.

5.2.3. Extended Model in SMV

The result of model extension is the extended model, i.e. a model that incorporates the definitions of both the nominal
and the faulty behaviors, written in SMV. The extended model is produced automatically by XSAP. We conclude this

6 We remark that the model extension enforces the mutual exclusion between different outgoing events from the same state, e.g. failure 1 and
failure 2 can not be triggered simultaneously.
7 For completeness, we mention that in XSAP it is possible to define additional transitions in the composed state machine. As an example, it would
be possible to define a transition from fault 1 to fault 2 in Fig. 11.
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Fig. 12. Model extension at SMV level.

section by describing the structure of the extended model in SMV. The model transformation implemented by XSAP
is pictorially illustrated in Fig. 12. Given a nominal module MOD to be extended with the definition of two faults
FM1 and FM2, the extended module MOD #Extended has the structure shown in Fig. 12 (right). It contains a module
Slice MOD corresponding to the fault slice, which in turn contains the definition of the nominal (module MOD) and
faulty behaviors defined in the slice (modules FM1 MOD and FM2 MOD). FM1 MOD and FM2 MOD contain the
specification of the faulty behaviors (i.e., the code instantiated from the effects model and dynamics model templates).
Modules MOD, FM1 MOD and FM2 MOD run in parallel, and the output of the extended module is computed by
a multiplexer (MUX), which is controlled by an input event. The input event takes one out of three values: no event
(nominal case, the output of MUX is the output of MOD), event FM1 (faulty case, the output of MUX is the output of
FM1 MOD) and event FM2 (faulty case, the output of MUX is the output of FM2 MOD).

5.3. Model Extension of the TMG

We exemplify the model extension on the TMG model. An example FEI specification is given in Listing 5. The exten-
sion applies to module types corresponding to the nominal components, namely the generators and circuit breakers8.
Let us illustrate the extension of the ‘Switch’ module (line 13), corresponding to the circuit breakers. It is possible
to specify sets of faults that affect a common set of variables in the nominal model, such sets are called slices9. For
instance, for the TMG we define a slice called ‘Switch StuckClosed StuckOpen’ (line 15) corresponding to the specifi-
cation of the ‘stuck-at-closed’ and ‘stuck-at-open’ faults of the circuit breakers, which affect variable ‘state’ (compare
Listing 3) of the ‘Switch’ module (line 16). The slice contains the definition of the two faults, which are declared (line
18) to be instances of the fault templates ‘StuckAtByValue D’ (effects model) and ‘Transient’ (dynamics model), and
have an associated fault probability of 1 ∗ 10−8. Let us describe the instantiation of the ‘stuck-at-closed’ fault. Lines
19–21 instantiate the formal parameters of the template with actual parameters, in particular the default parameters
‘input’ and ‘varout’ are both instantiated with ‘state’ (the fault reads and modifies the same variable ‘state’), whereas
the ‘term’ parameter is instantiated with the constant closed. Lines 22-23 link events from the dynamics model tem-
plate (compare Fig. 10) with input variables in the nominal model. In particular, the failure event is linked with event

8 The language permits a more fine-grained specification that applies to individual instances of modules, which is not illustrated here.
9 A nominal component can be associated with multiple slices, affecting disjoint sets of variables.
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1FAULT EXTENSION FE SC TMG
2

3 EXTENSION OF MODULE Generator
4 /−− Description of Fault Slice Gen StuckOff −−/
5 SLICE Gen StuckOff AFFECTS state WITH
6 /−− Description of fault mode stuckAt Off −−/
7 MODE stuckAt Off {1.e−7} : Permanent StuckAtByValue D(
8 data term << off,
9 data input << state,

10 data varout >> state,
11 event failure >> fault event stuck at off);
12

13 EXTENSION OF MODULE Switch
14 /−− Description of Fault Model for Switch −−/
15 SLICE Switch StuckClosed StuckOpen
16 AFFECTS state WITH
17 /−− Description of fault mode StuckAt Closed −−/
18 MODE stuckAt Closed {1.e−8} : Transient StuckAtByValue D(
19 data term << closed,
20 data input << state,
21 data varout >> state,
22 event failure >> fev closed,
23 event self fix >> nev);
24 /−− Description of fault mode StuckAt Open −−/
25 MODE stuckAt Open {1.e−8} : Transient StuckAtByValue D(
26 data term << open,
27 data input << state,
28 data varout >> state,
29 event failure >> fev open,
30 event self fix >> nev);

Listing 5. An example of fault extension instructions.

fev closed, and the self fix event is linked with event nev. We remark that the association of events defined in the
dynamics model template with events in the nominal model is optional. In our case, we use this feature to allow the
Monitor component to observe failures and repairs (compare discussion at the end of Section 5.1).

The extended model of the TMG is generated automatically by XSAP, based on the nominal model and the FEI
specification. The extended SMV model contains extended modules for the basic components (generators and circuit
breakers) as described in Fig. 12.

5.4. Requirements-based Modeling of the TMG Controller

In this section we show how to model the controller of the TMG and the corresponding requirements. The goal of the
controller is to issue proper commands to the basic components (generators and circuit breakers) in order to preserve
the functionality of the system (in a broad sense, as prescribed by its requirements), and minimize the impact of faults.
The TMG model comes with a complex and heterogeneous set of requirements (compare Section 3). They focus
on different aspects such as safety (e.g., R1), availability (e.g., R2), fault tolerance (e.g., R5), performance/priorities
(e.g., R3, R6). Furthermore, some requirements may be potentially conflicting, e.g., it is well known that safety may
adversely affect availability (and vice versa).

Synthesizing a controller that is guaranteed to satisfy all the requirements, in all possible system configurations,
is not straightforward. Since the set of possible system configurations is finite, in principle it is possible to list all the
configurations explicitly, and decide the commands to the issued on a case-by-case basis. However, such approach is
impractical and error prone, given the number of possible configurations (nominal and faulty) of system components
(considering that generators have 3 possible states and the circuit breakers have 4, this makes 33 ∗ 46 configurations
which is more that 105 configurations). Moreover, this method does not scale to larger systems. In practice, very often
simplifying assumptions are made, in order to simplify the synthesis of such systems. For instance, in diagnosis, it is
common to limit the number of faults that can be addressed, i.e., in our case we could synthesize the controller under
the hypothesis that at most two faults of basic components may occur at any time, thus reducing the overall number of
configurations that need to be considered.

In this paper, instead, we take a different approach. Namely, we synthesize the controller using a constraint-based
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style of modeling. Specifically, we model directly the requirements listed in Section 3, one-by-one, as properties of the
controller, and we impose them as constraints in the nominal model. Note that the requirements are expressed in such
a way that they are independent of the history of the system, hence the controller can be specified as a memory-less
component. For simplicity, we assume that the controller can react to possible faults in the system instantly, that is,
when a fault happens, the system is not allowed to reach an unsafe state (one violating the requirements) since the
controller is able to command a change of state that prevents the unsafe situation. This style of modeling can be easily
generalized to allow the system to reach an unsafe state and the controller to react with, e.g., a one-step delay to restore
a safe state10.

The result of the modeling is a controller that is guaranteed to satisfy the requirements by construction (since the
requirements are part of the model). This approach has two main advantages. First, it is a practical method, which
scales for large models. Second, no simplification is needed, in particular, the result can address situations with any
number of faults.

Note that the correctness of the synthesized controller w.r.t. the requirements can also be verified as part of func-
tional verification (and safety assessment) of the system. In particular, it is possible to formalize the requirements as
properties in temporal logic, check them against the model and prove that they are indeed satisfied (compare Sec-
tions 5.5, 6.1 and 6.3). We remark that proving the synthesized controller correct with respect to the requirements
also indirectly proves that the original set of requirements is realizable (and the synthesized controller is a correct
realization).

We now describe the modeling of the requirements. First, we show the encoding of the Monitor component, which
is needed by the Controller to estimate the state of the system. Listing 6 shows an excerpt of the code for the Monitor.
In particular, we show the code for circuit breaker BB1 (a similar encoding applies to generators and to the other
circuit breakers). The Monitor estimates the mode and the state of BB1. The mode is nominal by default, and can
fail open or closed as a result of input failure events; it is also nominal after the occurrence of a repair event; if no
events are triggered, the mode does not change. Similarly, the state is computed depending on the occurrence of failure
events and on the commands issued by the Controller. For instance, if the circuit breaker is in nominal mode, and the
Controller commands it to open, then it opens. If no events are triggered and no commands are issued, the state does
not change. Finally, a signal called ‘faults counter’ counts the number of faults in the system (i.e., the number of
components which are estimated to be in a faulty state).

In the rest of this section, we describe the modeling of each requirement individually. In the following, we refer to
code excerpts taken from the Controller component.

R1 “No bus shall be connected to more than one power source at any time”.
We illustrate the encoding of R1 for bus B1 in Listing 7 (the encoding for other buses is similar). We enforce B1

to be working (line 18). B1 is working if it is powered by at most one generator (lines 14–16). For each generator G,
we list all the possibilities for B1 to be powered (lines 9–11), e.g. ‘B1 poweredby G2’ (B1 is powered by G2) holds
in two cases (line 10): ‘B1 poweredby G2 L’ (B1 is powered by G2 from the left, i.e. through path GB2-BB2-BB3,
i.e. if B3 is powered by G2 from the left and BB3 is closed (line 4)); ‘B1 poweredby G2 R’ (B1 is powered by G2
from the right, i.e. through path GB2-BB1, i.e. if B2 is powered by G2 from above and BB1 is closed (line 5)). Note
that the definitions for different buses are mutually recursive.

R2 “If any power source is on, then all buses will be powered”.
R2 is a reliability (availability) requirement that states the level of tolerance of the TMG to faults. Note that it

may be violated in presence of a sufficient number of faults. We do not need to model this requirement explicitly
as a requirement of the controller, but we can verify it as part of functional verification – we do this in Section 6.1.
However, R2 implicitly states that the controller should maximize the availability of the system, that is, the goal of
the controller is to ensure that as many buses as possible are powered, insofar this is permitted by faults and while
respecting the other requirements. We encode this property of the controller as part of the encoding of requirement R3
below.

R3 “Bus power source priority and source to bus path priority schemes shall be respected at all times (see Fig. 3
and 4)”. The encoding of requirement R3 requires to enforce the power source and path priorities for buses B1,

10 The model with delay is also available in the XSAP distribution under examples/fe/triple modular generator. In the generalized model, the
system and the controller execute in interleaving, and the execution turn is enforced by a simple scheduler. The implementation of buses needs to
be extended to tolerate transient situations when they are exposed to faults, and some requirements have to be modified so that they are evaluated
after the execution of the controller.
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1MODULE Monitor(event Gs, event CBs, cmd to Gs, cmd to CBs, init Gs, init CBs)
2 VAR
3 mode est BB1 : {ok, ko open, ko closed};
4 state est BB1 : {closed, open};
5 DEFINE
6 fev open CBs := event CBs[0];
7 fev closed CBs := event CBs[1];
8 nev CBs := event CBs[2];
9 index BB1 := 3;
10 ASSIGN
11 init(mode est BB1) := ok;
12 next(mode est BB1) :=
13 case
14 fev open CBs[index BB1] : ko open;
15 fev closed CBs[index BB1] : ko closed;
16 nev CBs[index BB1] : ok;
17 TRUE : mode est BB1;
18 esac;
19 ASSIGN
20 init(state est BB1) := init CBs[index BB1];
21 next(state est BB1) :=
22 case
23 fev open CBs[index BB1] : open;
24 fev closed CBs[index BB1] : closed;
25 (next(mode est BB1) = ok) & (cmd to CBs[index BB1] = cmd open) : open;
26 (next(mode est BB1) = ok) & (cmd to CBs[index BB1] = cmd closed) : closed;
27 TRUE : state est BB1;
28 esac;
29−− code for generators and remaining circuit breakers
30−− ...
31−− faults counter counts the number of faults in the system
32 DEFINE
33 faults counter := count(
34 (mode est G1 != ok), (mode est G2 != ok), (mode est G3 != ok),
35 (mode est GB1 != ok), (mode est GB2 != ok), (mode est GB3 != ok),
36 (mode est BB1 != ok), (mode est BB2 != ok), (mode est BB3 != ok));

Listing 6. Encoding of the Monitor component.

1−− Definition of the possible paths to Bus 1 −−
2DEFINE
3 B1 poweredby G1 U := (next(MN.state est G1) = on) & (next(MN.state est GB1) = closed);
4 B1 poweredby G2 L := B3 poweredby G2 L & (next(MN.state est BB3) = closed);
5 B1 poweredby G2 R := B2 poweredby G2 U & (next(MN.state est BB1) = closed);
6 B1 poweredby G3 L := B3 poweredby G3 U & (next(MN.state est BB3) = closed);
7 B1 poweredby G3 R := B2 poweredby G3 R & (next(MN.state est BB1) = closed);
8DEFINE
9 B1 poweredby G1 := B1 poweredby G1 U;
10 B1 poweredby G2 := B1 poweredby G2 R | B1 poweredby G2 L;
11 B1 poweredby G3 := B1 poweredby G3 R | B1 poweredby G3 L;
12−− R1: No bus will be connected to more than 1 power source at any time.
13DEFINE
14 B1 is working :=
15 (B1 poweredby G1 −> (!B1 poweredby G2 & !B1 poweredby G3)) &
16 (B1 poweredby G2 −> (!B1 poweredby G3));
17TRANS
18 B1 is working;

Listing 7. Encoding of requirement R1.
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1DEFINE
2 stage 1 can do B1 G1 U := (next(MN.mode est G1) = ok) & (next(MN.mode est GB1) in {ok, ko closed});
3 stage 1 can do B1 G2 R := stage 1 can do B2 G2 U & (next(MN.mode est BB1) in {ok, ko closed});
4 stage 1 can do B1 G2 L := stage 1 can do B3 G2 L & (next(MN.mode est BB3) in {ok, ko closed});
5 stage 1 can do B1 G3 L := stage 1 can do B3 G3 U & (next(MN.mode est BB3) in {ok, ko closed});
6 stage 1 can do B1 G3 R := stage 1 can do B2 G3 R & (next(MN.mode est BB1) in {ok, ko closed});
7DEFINE
8 stage 1 can do B2 G2 U := (next(MN.mode est G2) = ok) & (next(MN.mode est GB2) in {ok, ko closed});
9 stage 1 can do B2 G1 L := stage 1 can do B1 G1 U & (next(MN.mode est BB1) in {ok, ko closed});
10 stage 1 can do B2 G1 R := stage 1 can do B3 G1 R & (next(MN.mode est BB2) in {ok, ko closed});
11 stage 1 can do B2 G3 R := stage 1 can do B3 G3 U & (next(MN.mode est BB2) in {ok, ko closed});
12 stage 1 can do B2 G3 L := stage 1 can do B1 G3 L & (next(MN.mode est BB1) in {ok, ko closed});
13DEFINE
14 stage 1 can do B3 G2 L := stage 1 can do B2 G2 U & (next(MN.mode est BB2) in {ok, ko closed});
15 stage 1 can do B3 G2 R := stage 1 can do B1 G2 R & (next(MN.mode est BB3) in {ok, ko closed});
16 stage 1 can do B3 G1 R := stage 1 can do B1 G1 U & (next(MN.mode est BB3) in {ok, ko closed});
17 stage 1 can do B3 G1 L := stage 1 can do B2 G1 L & (next(MN.mode est BB2) in {ok, ko closed});
18 stage 1 can do B3 G3 U := (next(MN.mode est G3) = ok) & (next(MN.mode est GB3) in {ok, ko closed});
19 DEFINE
20 stage 1 do B1 := case
21 stage 1 can do B1 G1 U : G1 U;
22 stage 1 can do B1 G2 R : G2 R;
23 stage 1 can do B1 G2 L : G2 L;
24 stage 1 can do B1 G3 L : G3 L;
25 stage 1 can do B1 G3 R : G3 R;
26 TRUE : unpowered;
27 esac;
28DEFINE
29 stage 1 do B2 := case
30 stage 1 do B1 in {G2 L, G2 R} : G2 U;
31 stage 1 do B1 = G3 R : G3 R;
32 stage 1 do B1 = G1 U & (next(MN.mode est BB1) = ko closed) : G1 L;
33 stage 1 do B1 = G1 U & (next(MN.mode est BB2) = ko closed) & (next(MN.mode est BB3) = ko closed) : G1 R;
34 stage 1 do B1 = G3 L & (next(MN.mode est BB1) = ko closed) : G3 L;
35 stage 1 do B1 = G3 L & (next(MN.mode est BB2) = ko closed) : G3 R;
36 TRUE : unpowered;
37 esac;
38DEFINE
39 stage 1 do B3 := case
40 stage 1 do B1 in {G3 L, G3 R} : G3 U;
41 stage 1 do B1 = G2 L : G2 L;
42 stage 1 do B1 = G1 U & (next(MN.mode est BB1) = ko closed) & (next(MN.mode est BB2) = ko closed) : G1 L;
43 stage 1 do B1 = G1 U & (next(MN.mode est BB3) = ko closed) : G1 R;
44 stage 1 do B1 = G2 R & (next(MN.mode est BB2) = ko closed) : G2 L;
45 stage 1 do B1 = G2 R & (next(MN.mode est BB3) = ko closed) : G2 R;
46 TRUE : unpowered;
47 esac;

Listing 8. Encoding of requirement R3: stage 1

B2 and B3. The encoding must take into account that priorities are mutually dependent, e.g., enforcing a given path
priority for bus B1 may constrain the paths that are possible for bus B2 and B311. Hence, we encode the priorities
using a definition in 3 stages (compare Listings 8, 9 and 10), where in stage i, we define the priorities for bus Bi. Note
that stage 2 definition depends on stage 1, and stage 3 on stage 1 and 2. Moreover, each stage consists in mutually
recursive definitions.

Let us first describe stage 1 definition (Listings 8). Lines 1–18 define the possible paths to power B1, B2 and
B3. A path can be used provided that the corresponding generator is working and the required circuit breakers are
not failed stuck-at-open. Lines 19–27 define which path has to be used to power B1. The priorities are dictated by
the requirements (as per Fig. 3 and 4). Lines 28–37 enforce the consequences of B1 priorities on the possible paths
to power B2. Namely, there are two different groups of constraints: lines 30–31 (consequences due to the generator
powering B1) and lines 32–36 (consequences due to stuck-at-closed faults). As an example, line 31 states that if B1

11 Note that the original requirements are under-specified, since they do not prescribe how to resolve such conflicts. Here, we make the choice that
choice of the path for bus B1 has priority over the choice for bus B2, which in turn has priority over the choice for bus B3.
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1DEFINE
2 stage 2 can do B2 G2 U := case
3 stage 1 do B2 = G2 U : TRUE;
4 stage 1 do B2 = unpowered : (next(MN.mode est G2) = ok) & (next(MN.mode est GB2) in {ok, ko closed});
5 TRUE : FALSE;
6 esac;
7 stage 2 can do B2 G1 L := stage 1 do B1 = G1 U & (next(MN.mode est BB1) in {ok, ko closed});
8 stage 2 can do B2 G1 R := stage 2 can do B3 G1 R & (next(MN.mode est BB2) in {ok, ko closed});
9 stage 2 can do B2 G3 R := stage 2 can do B3 G3 U & (next(MN.mode est BB2) in {ok, ko closed});
10 stage 2 can do B2 G3 L := stage 1 do B1 = G3 L & (next(MN.mode est BB1) in {ok, ko closed});
11DEFINE
12 stage 2 can do B3 G2 L := stage 2 can do B2 G2 U & (next(MN.mode est BB2) in {ok, ko closed});
13 stage 2 can do B3 G2 R := stage 1 do B1 = G2 R & (next(MN.mode est BB3) in {ok, ko closed});
14 stage 2 can do B3 G1 R := stage 1 do B1 = G1 U & (next(MN.mode est BB3) in {ok, ko closed});
15 stage 2 can do B3 G1 L := stage 2 can do B2 G1 L & (next(MN.mode est BB2) in {ok, ko closed});
16 stage 2 can do B3 G3 U := case
17 stage 1 do B3 = G3 U : TRUE;
18 stage 1 do B3 = unpowered : (next(MN.mode est G3) = ok) & (next(MN.mode est GB3) in {ok, ko closed});
19 TRUE : FALSE;
20 esac;
21DEFINE
22 stage 2 do B2 := case
23 stage 1 do B2 != unpowered : stage 1 do B2;
24 stage 2 can do B2 G2 U : G2 U;
25 stage 2 can do B2 G1 L : G1 L;
26 stage 2 can do B2 G1 R : G1 R;
27 stage 2 can do B2 G3 R : G3 R;
28 stage 2 can do B2 G3 L : G3 L;
29 TRUE : unpowered;
30 esac;
31DEFINE
32 stage 2 do B3 := case
33 stage 1 do B3 != unpowered : stage 1 do B3;
34 stage 2 do B2 = G3 R : G3 U;
35 stage 2 do B2 = G1 R : G1 R;
36 stage 2 do B2 = G2 U & (next(MN.mode est BB2) = ko closed) : G2 L;
37 stage 2 do B2 = G1 L & (next(MN.mode est BB2) = ko closed) : G1 L;
38 TRUE : unpowered;
39 esac;

Listing 9. Encoding of requirement R3: stage 2

1DEFINE
2 stage 3 can do B3 G2 L := stage 2 do B2 = G2 U & (next(MN.mode est BB2) in {ok, ko closed});
3 stage 3 can do B3 G2 R := stage 1 do B1 = G2 R & (next(MN.mode est BB3) in {ok, ko closed});
4 stage 3 can do B3 G1 R := stage 1 do B1 = G1 U & (next(MN.mode est BB3) in {ok, ko closed});
5 stage 3 can do B3 G1 L := stage 2 do B2 = G1 L & (next(MN.mode est BB2) in {ok, ko closed});
6 stage 3 can do B3 G3 U := case
7 stage 2 do B3 = G3 U : TRUE;
8 stage 2 do B3 = unpowered : (next(MN.mode est G3) = ok) & (next(MN.mode est GB3) in {ok, ko closed});
9 TRUE : FALSE;
10 esac;
11DEFINE
12 stage 3 do B3 := case
13 stage 2 do B3 != unpowered : stage 2 do B3;
14 stage 3 can do B3 G2 L : G2 L;
15 stage 3 can do B3 G2 R : G2 R;
16 stage 3 can do B3 G1 R : G1 R;
17 stage 3 can do B3 G1 L : G1 L ;
18 stage 3 can do B3 G3 U : G3 U;
19 TRUE : unpowered;
20 esac;

Listing 10. Encoding of requirement R3: stage 3
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1 DEFINE
2 cmd B1 G1 U := (cmd G1 = cmd on) & (cmd GB1 = cmd closed);
3 cmd B1 G2 R := cmd B2 G2 U & (cmd BB1 = cmd closed);
4 cmd B1 G2 L := cmd B3 G2 L & (cmd BB3 = cmd closed);
5 cmd B1 G3 L := cmd B3 G3 U & (cmd BB3 = cmd closed);
6 cmd B1 G3 R := cmd B2 G3 R & (cmd BB1 = cmd closed);
7
8 DEFINE
9 cmd B2 G2 U := (cmd G2 = cmd on) & (cmd GB2 = cmd closed);
10 cmd B2 G1 L := cmd B1 G1 U & (cmd BB1 = cmd closed);
11 cmd B2 G1 R := cmd B3 G1 R & (cmd BB2 = cmd closed);
12 cmd B2 G3 R := cmd B3 G3 U & (cmd BB2 = cmd closed);
13 cmd B2 G3 L := cmd B1 G3 L & (cmd BB1 = cmd closed);
14
15 DEFINE
16 cmd B3 G2 L := cmd B2 G2 U & (cmd BB2 = cmd closed);
17 cmd B3 G2 R := cmd B1 G2 R & (cmd BB3 = cmd closed);
18 cmd B3 G1 R := cmd B1 G1 U & (cmd BB3 = cmd closed);
19 cmd B3 G1 L := cmd B2 G1 L & (cmd BB2 = cmd closed);
20 cmd B3 G3 U := (cmd G3 = cmd on) & (cmd GB3 = cmd closed);
21 −− B1 preferences
22 TRANS
23 case
24 stage 1 do B1 = G1 U : cmd B1 G1 U;
25 stage 1 do B1 = G2 R : cmd B1 G2 R;
26 stage 1 do B1 = G2 L : cmd B1 G2 L;
27 stage 1 do B1 = G3 L : cmd B1 G3 L;
28 stage 1 do B1 = G3 R : cmd B1 G3 R;
29 TRUE : TRUE;
30 esac;
31 −− B2 preferences
32 TRANS
33 case
34 stage 2 do B2 = G2 U : cmd B2 G2 U;
35 stage 2 do B2 = G1 L : cmd B2 G1 L;
36 stage 2 do B2 = G1 R : cmd B2 G1 R;
37 stage 2 do B2 = G3 R : cmd B2 G3 R;
38 stage 2 do B2 = G3 L : cmd B2 G3 L;
39 TRUE : TRUE;
40 esac;
41 −− B3 preferences
42 TRANS
43 case
44 stage 3 do B3 = G2 L : cmd B3 G2 L;
45 stage 3 do B3 = G2 R : cmd B3 G2 R;
46 stage 3 do B3 = G1 R : cmd B3 G1 R;
47 stage 3 do B3 = G1 L : cmd B3 G1 L;
48 stage 3 do B3 = G3 U : cmd B3 G3 U;
49 TRUE : TRUE;
50 esac;

Listing 11. Encoding of requirement R3: enforcing priorities

is powered by G3 from the right, then B2 must also be powered by G3 from the right, and line 35 states that if B1
is powered by G3 from the left and BB2 is failed stuck-at-closed, then B2 must be powered by G3 from the right.
Similarly, lines 38–47 enforce the consequences of B1 priorities on the possible paths to power B3.

In stage 2 definition (Listings 9) we define the possible paths to power B2 and B3. The definition for the possible
paths is similar to stage 1, however it has to take into account the decisions for B1 taken in stage 1. For instance, in line
7, powering B2 using G1 from the left is possible only if stage 1 forced B1 to be powered by G1 from above. Lines
21–30 define the priorities for B2. If a priority for B2 has already been decided in stage 1, then it is propagated here,
otherwise it is decided based on the priority requirements. Lines 31–39 enforce the consequences of B2 priorities on
the possible paths to power B3.

Stage 3 (Listings 10) follows the same pattern as stage 2.
Finally, Listing 11 describes how we enforce the priorities defined so far on the model. Lines 1–20 define the
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1VAR
2 B1 : Bus(B1 poweredby G1, B1 poweredby G2, B1 poweredby G3);
3DEFINE
4 B1 poweredby G1 U := (G1.is on) & (GB1.is closed);
5 B1 poweredby G2 L := B3 poweredby G2 L & (BB3.is closed);
6 B1 poweredby G2 R := B2 poweredby G2 U & (BB1.is closed);
7 B1 poweredby G3 L := B3 poweredby G3 U & (BB3.is closed);
8 B1 poweredby G3 R := B2 poweredby G3 R & (BB1.is closed);
9DEFINE
10 B1 poweredby G1 := B1 poweredby G1 U;
11 B1 poweredby G2 := B1 poweredby G2 R | B1 poweredby G2 L;
12 B1 poweredby G3 := B1 poweredby G3 R | B1 poweredby G3 L;

Listing 12. Encoding of requirement R4.

commands that realize a given source-path power option. For instance (line 2) powering B1 using G1 from above
requires commanding G1 to switch on, and GB1 to close. Lines 22-50 translate the priorities for B1, B2 and B3 in the
corresponding commands for the controller (note that conditions in a case statement are evaluated in order).

R4 “If no power source is on, then all buses will be unpowered”. We define the property of a bus being powered with
the following declaration in the Bus module: DEFINE is powered := (state = working) & (count((in1), (in2), (in3))
= 1), that is, a bus is powered if it is working and exactly one out of the three inputs in1, in2, in3 is true (the bus is
powered by exactly one generator). We illustrate the encoding of R4 for bus B1 in Listing 12. Bus B1 is instantiated
as in line 2. The input parameters are defined in the constraints below (lines 4–8 and 10–12), which follow the same
pattern as for requirements R1 and R3. It is easy to see that these constraints state that B1 is powered if it is electrically
connected to one generator that is switched on. As a consequence, if no generator is switched on, then B1 is unpowered,
and similarly for the other buses.

R5 “Any single/dual component failure shall not cause other system requirements to be violated.”
R2 is a reliability (fault tolerance) requirement that states that the system is resilient to single and double faults.

We do not need to model this requirement explicitly as a requirement of the controller; we will formalize and verify
it as part of functional verification in Section 6.1. Note that, as for requirement R2, it is important to enforce that the
controller maximizes the availability of the system (see requirement R3).

R6 “Never more than two generators are on, unless required in case of failures”.
Requirement R6 states that at most two generators should be switched on at any time, except in presence of faults.

This requirements is a consequence of requirements R1, R3 and of the maximum availability property of the controller.
In Section 6.1 we will formalize this requirement and prove more precisely under which circumstances (number of
faults) it is necessary to switch on all three generators.

5.5. Modeling the Properties of the TMG

In this section we discuss the modeling of the properties of the TMG. We use these properties in Section 6 to carry out
functional verification and safety assessment of the TMG.

We show a sample list of properties in Listing 13. Some properties are directly derived from the requirements of
the TMG described in Section 3, whereas some others are used as sanity checks or to prove further characteristics
of the system. Properties are specified in the main module. They are expressed as invariants or properties written in
temporal logic (CTL or LTL). Property ‘R1 true’ states that buses never break. This is a consequence of requirements
R1 that we imposed on the controller, namely that buses are never connected to more than one power source at any
time. Property ‘R2 false’ states that all the buses are always powered. We can expect this property to be falsified in case
of (multiple) faults. We interpret this property in view of requirement R5 (fault tolerance to single and double faults)
and amend it into ‘R2 true’ (we add the assumption that the number of faults is less than 3 – note that ‘faults counter’
is defined in the Monitor module, compare Listing 6). ‘R4 true’ states that all buses are unpowered, if all generators
are switched off. ‘R6 true’ states that, in case there are no faults, at most two generators are switched on at any time.

The remaining properties state various characteristics of the TMG. Property ‘Monitor State Consistency true’
states that the state estimation of the monitor is always correct (i.e., the estimated state matches the real state). Property
‘system in init configuration until fault true’ states that the system always stays in the initial configuration, unless a
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1−− R1: No bus will be connected to more than 1 power source at any time.
2 INVARSPEC NAME R1 true := !(SC.B1.is broken | SC.B2.is broken | SC.B3.is broken);
3
4−− R2: all buses are always powered
5−− R5: Any single/dual component failure shall not cause other system requirements to be violated.
6 INVARSPEC NAME R2 false := (SC.B1.is powered & SC.B2.is powered & SC.B3.is powered);
7 INVARSPEC NAME R2 true := ((CN.MN.faults counter < 3) −> (SC.B1.is powered & SC.B2.is powered & SC.B3.is powered));
8
9−− R4: If no power source is on, then all buses will be unpowered
10 INVARSPEC NAME R4 true :=
11 ((SC.G1.is off & SC.G2.is off & SC.G3.is off) −> (!SC.B1.is powered & !SC.B2.is powered & !SC.B3.is powered));
12
13−− R6: Never more than two generators on unless required in case of failure
14 INVARSPEC NAME R6 true :=
15 (CN.MN.faults counter = 0) −> (SC.G1.is off | SC.G2.is off | SC.G3.is off);
16
17−− The monitor correctly knows the state of the system at anytime
18 INVARSPEC NAME Monitor State Consistency true :=
19 (SC.G1.state = CN.MN.state est G1) & (SC.G2.state = CN.MN.state est G2) & (SC.G3.state = CN.MN.state est G3) &
20 (SC.GB1.state = CN.MN.state est GB1) & (SC.GB2.state = CN.MN.state est GB2) & (SC.GB3.state = CN.MN.state est GB3) &
21 (SC.BB1.state = CN.MN.state est BB1) & (SC.BB2.state = CN.MN.state est BB2) & (SC.BB3.state = CN.MN.state est BB3);
22
23−− If there are no faults, the system stays in the initial configuration
24DEFINE init conf :=
25 SC.G1.is on & SC.G2.is on & SC.G3.is off &
26 SC.GB1.is closed & SC.GB2.is closed & SC.GB3.is open &
27 SC.BB1.is open & SC.BB2.is closed & SC.BB3.is open;
28LTLSPEC NAME system in init configuration until fault true := (init conf U (CN.MN.faults counter > 0)) | G init conf;
29
30−− There exists a path in which there is no fault
31CTLSPEC NAME system can always work true := EG (CN.MN.faults counter = 0);
32
33−− From each nominal state it is always possible to end up in a faulty state
34CTLSPEC NAME system can always fail true :=
35 AG(CN.MN.faults counter = 0 −> EX (CN.MN.faults counter >0));
36CTLSPEC NAME G1 can always fail true := AG( CN.MN.mode est G1 = ok −> EX (CN.MN.mode est G1 = ko));
37CTLSPEC NAME BB1 can always fail true :=
38 AG(CN.MN.mode est BB1 = ok −> EX (CN.MN.mode est BB1 = ko open) & EX (CN.MN.mode est BB1 = ko closed));

Listing 13. Properties of the TMG.

fault occurs. Finally, we use some CTL properties to express ‘sanity checks’, namely to assess that the behavior of the
model matches the designer’s intent. In particular, property ‘system can always work true’ states that there exists an
execution where no faults occur. ‘system can always fail true’ states that it is always possible for a fault to occur in
a nominal state. Finally, properties ‘G1 can always fail true’ and ‘BB1 can always fail true’ state that there exists an
execution where G1 (respectively, BB1) fails; similar properties can be formulated for the remaining generators and
circuit breakers.

6. Functional Verification and Safety Assessment of the TMG

In this section we discuss functional verification and safety assessment. We recall the main definitions we need for
safety assessment, in particular the definitions of fault trees and (minimal) cut sets. We also discuss Failure Modes
and Effects Analysis (FMEA), Common Cause Analysis (CCA) and latent faults. Then, we apply and illustrate the
outcome of the analyses on the TMG model.

6.1. Functional Verification of the TMG

We now illustrate the formal verification of the TMG, against the properties identified in Section 5.5. The properties
can be verified using the property verification primitives in XSAP, which are inherited from the NUXMV model
checker.

All properties are verified to hold, with the exception of ‘R2 false’ and ‘system in init configuration until fault true’.
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1 TRANS
2 ((next(MN.state est GB1) = open) −> (cmd G1 = cmd off)) &
3 ((next(MN.state est GB2) = open) −> (cmd G2 = cmd off)) &
4 ((next(MN.state est GB3) = open) −> (cmd G3 = cmd off));
5 TRANS
6 ((next(MN.mode est GB1) = ok & next(MN.state est GB1) = closed) −> (cmd G1 = cmd on)) &
7 ((next(MN.mode est GB2) = ok & next(MN.state est GB2) = closed) −> (cmd G2 = cmd on)) &
8 ((next(MN.mode est GB3) = ok & next(MN.state est GB3) = closed) −> (cmd G3 = cmd on));

Listing 14. Constraints to resolve non-determinism in the Controller.

1 000 :EG CN.MN.faults counter = 0
2 [CTL True N/A system can always work true]
3 001 :AG (CN.MN.faults counter = 0 −> EX CN.MN.faults counter > 0)
4 [CTL True N/A system can always fail true]
5 002 :AG (CN.MN.mode est G1 = ok −> EX CN.MN.mode est G1 = ko)
6 [CTL True N/A G1 can always fail true]
7 <...>
8 008 :AG (CN.MN.mode est BB1 = ok −> (EX CN.MN.mode est BB1 = ko open & EX CN.MN.mode est BB1 = ko closed))
9 [CTL True N/A BB1 can always fail true]
10 <...>
11 011 :((init conf U CN.MN.faults counter > 0) | G init conf)
12 [LTL True N/A system in init configuration until fault true]
13 012 :!((SC.B1.is broken | SC.B2.is broken) | SC.B3.is broken)
14 [Invar True N/A R1 true]
15 013 :((SC.B1.is powered & SC.B2.is powered) & SC.B3.is powered)
16 [Invar False 1 R2 false]
17 014 :(CN.MN.faults counter < 3 −> ((SC.B1.is powered & SC.B2.is powered) & SC.B3.is powered))
18 [Invar True N/A R2 true]
19 015 :(((SC.G1.is off & SC.G2.is off) & SC.G3.is off) −> ((!SC.B1.is powered & !SC.B2.is powered) & !SC.B3.is powered))
20 [Invar True N/A R4 true]
21 016 :(CN.MN.faults counter = 0 −> ((SC.G1.is off | SC.G2.is off) | SC.G3.is off))
22 [Invar True N/A R6 true]
23 017 :((((((((SC.G1.state = CN.MN.state G1 & SC.G2.state = CN.MN.state G2) & SC.G3.state = CN.MN.state G3) &
24 SC.GB1.state = CN.MN.state GB1) & SC.GB2.state = CN.MN.state GB2) & SC.GB3.state = CN.MN.state GB3) &
25 SC.BB1.state = CN.MN.state BB1) & SC.BB2.state = CN.MN.state BB2) & SC.BB3.state = CN.MN.state BB3)
26 [Invar True N/A Monitor State Consistency true]

Listing 15. Outcome of property verification using XSAP.

‘R2 false’ (all buses are always powered) is clearly proved false, since it may not hold in presence of (multiple) faults.
‘R2 true’ holds instead, proving that, under the hypothesis that there are at most two faults, all buses are always
powered.

Property ‘system in init configuration until fault true’ states that the system always stays in the initial configura-
tion, unless a fault occurs. An analysis of the counterexample generated by XSAP shows that this property does not
hold, since there is some non-determinism in the controller specification. For instance, considering the pair G1-GB1,
there are two ways to disable it (i.e., achieve a situation where no current flows out of GB1): switch off G1 (regardless
of the state of GB1) or open GB1 (regardless of the state of G1). To avoid this non-determinism, we add the constraints
shown in Listing 14. Namely, we state that when GB1 is open, G1 must be switched off, and when GB1 is ok and
closed, G1 must be switched on. Similarly for the pairs G2-GB2 and G3-GB3.

With this modification, property ‘system in init configuration until fault true’ holds. Listing 15 shows the XSAP
property database, summarizing the outcome of property verification.

We remark that property ’R6 true’ can be generalized to single faults. It is easy to prove that even in presence of
single faults, the controller needs to switch on at most two generators. The property cannot be generalized to double
faults, e.g., in case both BB2 and BB3 fail, the path priorities force the controller to switch on all generators.

6.2. Safety Assessment in XSAP

Safety assessment has the goal to assess the dependability characteristics and fault tolerance of a given system. Typical
artifacts produced by safety assessment are fault trees and FMEA tables [VSD+02, SAE96]. In many application
domains, e.g. aeronautics, such activities are mandatory to obtain system certification.
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6.2.1. Fault Tree Analysis

A Fault Tree (FT) is a graphical representation of the sets of possible causes of a given (undesired) event called Top
Level Event (TLE). The TLE acts as the root of the tree and is linked by means of logical gates (AND, OR) to the basic
events (faults). The minimal combinations of faults explaining the TLE are called Minimal Cut Sets (MCSs). A fault
tree is a qualitative artifact that is typically evaluated quantitatively. In particular, the probability of the TLE and the
intermediate nodes of the tree are computed depending on the probabilities of the basic events, which are assumed to
be independent12.

We give the following definitions. We assume that a system is given, represented as an STS. A cut set is formally
defined as follows [BCT07].

Definition 6.1 (Cut set). Let S = 〈V, Vo,W,Wo, F, I, T 〉 be an STS, FC ⊆ F a set of faults (fault configuration) ,
and TLE a formula over V (top level event). We say that FC is a cut set of TLE, written cs(FC, TLE) if there exists a
trace π = s0, i1, s1, i2, s2, . . . , ik, sk of S such that sk |= TLE and ∀f ∈ F. f ∈ FC ⇐⇒ ∃i ∈ {0, . . . , k}. (si |=
f).

Intuitively, a cut set is a set of faults (called a fault configuration), each of them being active at some point along a
trace witnessing the occurrence of the top level event. The cardinality of the cut set is called order.

Minimal Cut Sets (MCSs) are minimal fault configurations satisfying Definition 6.1. In safety analysis, it is im-
portant to identify the minimal cut sets, since they represent simpler explanations for the top level event and, under the
assumption of independent faults, they have higher probabilities. MCSs are defined as follows.

Definition 6.2 (Minimal Cut Sets). Let S = 〈V, Vo,W,Wo, F, I, T 〉 be an STS, FConf = 2F the set of all fault
configurations, and TLE a top level event. We define the set of cut sets and minimal cut sets of TLE as follows:

CS(TLE) = {FC ∈ FConf | cs(FC, TLE)}
MCS(TLE) = {cs ∈ CS(TLE) | ∀cs′ ∈ CS(TLE) (cs′ ⊆ cs⇒ cs′ = cs)}

The definition of MCSs is inherently based on the assumption that fault configurations are monotonic, i.e. activating
additional faults cannot prevent the occurrence of the top level event. This assumption is commonly used in standard
practice, since it leads to a conservative over-approximation of the probability of the TLE (i.e., system unreliability).
Typically, the over-approximation is acceptable, since the probability that a fault does not occur (calculated as 1 minus
the probability of the fault occurring) is usually “close to 1”.

6.2.2. Failure Modes and Effects Analysis

FMEA tables are a tabular representation of the causality relationships between (sets of) faults and a list of properties
(undesired events). FMEA takes as input a set of fault configurations and a set of top level events, and it produces
a mapping (tabular representation) between elements in the two sets. An entry in the table means that a given fault
configuration is a possible explanation for the corresponding top level event.

Definition 6.3 (FMEA Tables). Let S = 〈V, Vo,W,Wo, F, I, T 〉 be an STS, F = {FC1, . . . FCl} ⊆ 2F a set of
fault configurations, and T = {TLE1, . . . , TLEm} a set of top level events. An FMEA table for F and T , denoted
FMEA(F, T ), is the set of pairs {〈FCi, TLEj〉 | FCi ∈ F ∧ TLEj ∈ T ∧ cs(FCi, TLEj)}

Usually, FMEA tables are generated for all possible fault configurations up to a maximum cardinality (called order),
e.g., an FMEA table of order 2 considers all fault configurations with at most 2 faults. Often, only single faults are
considered, i.e. FMEA tables of order 1 are generated.

6.2.3. Common Cause Analysis

Common Cause Analysis (CCA) is an important step of safety assessment. Its purpose is to evaluate the consequences
of events that may break the hypothesis of independence of faults. For instance, two components that are physically
located close to each other, may break simultaneously as a result of a common initiating event (the common cause),

12 Depending on the domain, the fault probability may be expressed in different ways, e.g., as probability per unit of time (called failure rate) or
probability per mission, with reference to a default mission duration. In the context of this paper we need not commit to a specific choice. For the
TMG model we can assume that the fault probabilities are expressed as failure rates, without loss of generality.



26 M. Bozzano, A. Cimatti, M.Gario, D.Jones, C.Mattarei

Fig. 13. A fault tree for the TMG (excerpt).

e.g., a fire. In other situations, components may break as a result of a logical dependence, e.g. two components that
are commanded by the same software, may break due to a wrong control strategy.

Common causes must be investigated since they invalidate the fault independence assumption, thus leading to
higher probability of failure (namely, the probability of a fault combination may be much higher than the product of the
individual probabilities). As part of safety assessment, potential common causes are identified, and their consequences
on system reliability investigated.

6.2.4. Latent Faults

A latent fault is a fault which is present but has not been detected at the time the mission starts (e.g., at the beginning
of a flight for an aircraft, or at the time a system is put into operation). For instance, a latent fault may be associated
with a component which is not in use, or may be such that its effects are masked due to, e.g., the operational conditions
or mission phase, or due to fault tolerance mechanisms implemented in the system. A latent fault may have an impact
on safety, since it decreases the reliability of the system.

XSAP enables the specification of faults that may be failed latent. For such faults, the latent probability (probability
that the fault is already present before the mission starts) is specified in the fault extension instructions in addition to
the standard probability (probability that the fault randomly occurs during the mission).

6.3. Safety Assessment of the TMG

In this section we illustrate the safety assessment process on the TMG model. In particular, we use XSAP to generate
fault trees and FMEA tables, and we evaluate the dependability characteristics of the TMG.

XSAP can automatically construct a fault tree, taking as input the extended model of the TMG, the fault specifica-
tion, and a formula corresponding to the top level event. The fault tree is a logical characterization of the minimal cut
sets, according to Definition 6.2. We generate the fault tree for the top level event corresponding to the negation of in-
variant ‘R2 false’ (i.e., stating that at least one bus is not powered). Fig. 13 shows a portion of the generated fault tree,
where two minimal cut sets (of order 4 and 3, respectively) are visible. Each cut set represents a fault configuration
that causes the top level event (a possible cause for a bus not being powered). The basic events are decorated with the
probabilities specified in the fault extension instructions (compare Listing 5). The probabilities of the minimal cut sets
and of the top level event are computed based on the probabilities of the basic events. Fig. 14 lists all the minimal cut
sets of order 3, along with some statistics, generated by XSAP: the fault tree has 14 minimal cut sets of order 3 and 12
minimal cut sets of order 4, for a total of 26 minimal cut sets. An example of minimal cut set of order 4, corresponding
to the one displayed in Fig. 13, is ‘G1 stuck off, G3 stuck off, BB1 stuck open, BB2 stuck open’.

Considering the same top level event (the negation of ‘R2 false’), the FMEA tables of order up to 2 are empty. In
fact, there are no cut sets or order up to 2. The FMEA table of order 3 contains the minimal cut sets listed in Fig. 14,
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Order Number Cumul
0 0 0
1 0 0
2 0 0
3 14 14
4 12 26

NR MCS
1 GB1 stuck open, GB2 stuck open, GB3 stuck open
2 GB2 stuck open, BB1 stuck open, BB2 stuck open
3 GB1 stuck open, BB1 stuck open, BB3 stuck open
4 GB3 stuck open, BB2 stuck open, BB3 stuck open
5 G1 stuck off , GB2 stuck open, GB3 stuck open
6 G1 stuck off , BB1 stuck open, BB3 stuck open
7 G2 stuck off , GB1 stuck open, GB3 stuck open
8 G2 stuck off , BB1 stuck open, BB2 stuck open
9 G1 stuck off , G2 stuck off , GB3 stuck open
10 G3 stuck off , GB1 stuck open, GB2 stuck open
11 G3 stuck off , BB2 stuck open, BB3 stuck open
12 G1 stuck off , G3 stuck off , GB2 stuck open
13 G2 stuck off , G3 stuck off , GB1 stuck open
14 G1 stuck off , G2 stuck off , G3 stuck off

Fig. 14. Statistics and minimal cut sets or order 3 for the fault tree in Fig. 13, with TLE ‘R2 false’ (at least one bus is
not powered).

def fault_probability(
PROB__hist_var_13_SC_GB2_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE,
PROB__hist_var_15_SC_GB1_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE,
PROB__hist_var_5_SC_BB3_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE,
PROB__hist_var_7_SC_BB2_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE,
PROB__hist_var_2_SC_G2_Gen_StuckOff_mode_is_stuckAt_Off_TRUE,
PROB__hist_var_3_SC_G1_Gen_StuckOff_mode_is_stuckAt_Off_TRUE,
PROB__hist_var_11_SC_GB3_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE,
PROB__hist_var_9_SC_BB1_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE,
PROB__hist_var_1_SC_G3_Gen_StuckOff_mode_is_stuckAt_Off_TRUE):

EXPR_1 = PROB__hist_var_13_SC_GB2_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE
EXPR_2 = PROB__hist_var_15_SC_GB1_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE
EXPR_3 = PROB__hist_var_5_SC_BB3_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE
EXPR_4 = PROB__hist_var_7_SC_BB2_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE
EXPR_5 = 1
EXPR_6 = EXPR_5 - EXPR_4
EXPR_7 = PROB__hist_var_11_SC_GB3_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE
EXPR_8 = EXPR_5 - EXPR_7
EXPR_9 = PROB__hist_var_9_SC_BB1_Switch_StuckClosed_StuckOpen_mode_is_stuckAt_Open_TRUE
EXPR_10 = EXPR_5 - EXPR_9
<...>
EXPR_100 = EXPR_75 + EXPR_99
EXPR_101 = EXPR_55 * EXPR_100
EXPR_102 = EXPR_54 + EXPR_101
prob = EXPR_102
return prob

if __name__ == ’__main__’:
p = fault_probability()
print("Default probability of TLE is: %e\n" % p)

Fig. 15. Symbolic probability function for the fault tree in Fig. 13 (excerpt).

whereas the FMEA or order 4 contains, in addition to the minimal cut sets of order 3 and 4, all (non minimal) fault
configurations or cardinality 4 that are supersets of a minimal cut set of order 3.

6.3.1. Symbolic Probability Computation

Along with the computation of the probability for the top level event, XSAP produces a symbolic function called
unreliability function that can be used to compute the probability of the top level event, for generic values of the
probabilities of the basic events (that is, the probabilities of the basic events are parameters of this function). Fig. 15
shows the symbolic probability function, in python syntax, for the fault tree in Fig. 13.

This feature can be used to re-evaluate the probability of the top level event for different values of the probabilities
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1FAULT EXTENSION FE SC TMG
2 /−− ... −−/
3 COMMON CAUSES
4 CAUSE CC1 {1.5e−8}
5 MODULE Generator
6 FOR INSTANCES SC.G[12]
7 MODE Gen StuckOff.stuckAt Off WITHIN 1 .. 2;

Listing 16. Fault extension instructions for a common cause.

Order Number Cumul
0 0 0
1 0 0
2 2 2
3 17 19
4 12 31

Fig. 16. Statistics and a fault tree for the TMG (excerpt) including a common cause.

of the basic events, without re-generating the fault tree, which may be expensive. It can also be used to perform trade-
off analyses, e.g. evaluate the probability of the top level event, while varying the probabilities of (some of) the basic
faults. For instance, it may be possible to determine an optimal allocation (w.r.t. some notion of cost) of the reliability
of basic components, that guarantees an upper bound of the probability for the top level event.

6.3.2. Common Cause Analysis

We exemplify Common Cause Analysis on the TMG. As an example, Listing 16 shows an example of specification,
where the fault extension instructions for the TMG (compare Listing 5) are enriched with the definition of a common
cause called CC1. Common causes may have impact on different (instances of) components, e.g. in this example the
occurrence of CC1 will cause a failure (‘stuck-at-off’) of two instances of the generator component, precisely genera-
tors G1 and G2 (lines 6 and 7). Failure of the components may be simultaneous or, more in general, be constrained by
a given dynamics (cascading faults), in this example (line 7) failures will occur within 1 and 2 steps w.r.t. the initiating
event (the common cause). Probability is attached (line 4) to the common cause; in this example the probability of the
common cause is significantly higher (1.5 ∗ 10−8) than the product of the individual probabilities of failure of the two
generators (1 ∗ 10−14).

We now re-run FTA for the TMG, for the top level event corresponding to the negation of invariant ‘R2 false’. Note
that in the analysis, common causes are evaluated along with individual events (e.g., generators G1 and G2 may fail as
a result of CC1, but also as independent events). All possible combinations of failures are considered in the analysis.
The results of the analysis are shown in Fig. 16. In particular, we show the statistics on the minimal cut sets on the left,
and an excerpt of the fault tree on the right. As a consequence of the inclusion of the common cause in the analysis,
we have additional cut sets. Moreover, the system is no more robust w.r.t. double faults, in fact we have two minimal
cut sets of order 2, which are displayed in the excerpt of the fault tree on the right of Fig. 16. The minimal cut sets
of order 2 correspond to rows 9 and 14 in Fig. 14 (right); they are obtained by replacing two individual independent
faults (G1 stuck off, G2 stuck off) with the common cause CC1. Note that rows 9 and 14 in Fig. 14 are still considered
in the analysis (they still appear among the minimal cut sets of order 3). As a result of the inclusion of the common
cause, the probability of the top level event increases from 1.36 ∗ 10−21 to 1.65 ∗ 10−15.
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Fig. 17. A fault tree for the TMG (excerpt) including a latent fault.

6.3.3. Latent Faults

We exemplify the specification of latent faults in the TMG example. Let us consider an updated specification for the
generators, namely that a generator may fail ‘stuck-at-off’ latent with a probability of 1 ∗ 10−6, in addition to the
standard probability of 1 ∗ 10−7. We re-run FTA for the TMG. The probability for the top level event increases from
1.65 ∗ 10−15 to 1.67 ∗ 10−14. Fig. 17 contains an excerpt of the generated fault tree, showing the minimal cut set (of
order 3) corresponding to row 6 in Fig. 14 (right). The analysis is carried out by splitting cases for latent faults that
appear within minimal cut sets. For instance, in the minimal cut set displayed in Fig. 17, one fault (out of three) is
possibly latent (the one for generator G1), giving rise to two different cases: one where G1 is failed latent, and one
where G1 fails during the mission. Notice that all possible combinations of latent faults are considered in the analysis,
e.g. for the minimal cut set corresponding to row 9 in Fig. 14 (right), two components (G1 and G2) may be failed
latent, giving rise to a total of 4 cases.

A special treatment is required for minimal cut sets where all faults may be failed latent, e.g., consider row 14 in
Fig. 14 (right). In theory, it should give rise to 8 possible combinations. However, following [SAE96], we assume that
the combinations where all generators are failed latent cannot occur, therefore only 7 combinations are generated13.
The rationale of this choice is the assumption that a top level event of a fault tree should be detectable. As a conse-
quence, if all components in a minimal cut sets are failed latent, then the top level event should have been detected
before the beginning of the mission, therefore the mission should not have been started. In the case of the TMG we
assume that, if all generators are failed ‘stuck-at-off’, it is detectable that some bus is not powered, hence the system
is not put into operation.

7. Fault Detection and Identification Analysis of the TMG

In this section we discuss diagnosability, fault detection and identification analysis. We recall the main definitions and
present a general framework encompassing these notions, and we exemplify its application to the TMG model.

13 This corner case motivates why case splitting is necessary to address FTA in case of latent faults. In fact, just adding up probabilities (latent +
standard) and considering only one fault event, would not work.
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7.1. Diagnosability, Fault Detection and Identification in XSAP

The design of safety critical systems requires mechanisms to effectively detect and identify faults that may occur
during system operation, in order to guarantee safety, or even continue operation in presence of faults. A diagnoser
is a sub-system whose purpose is to detect and/or identify faults. A diagnoser typically interacts with the system via
some sensors (inputs to the diagnoser, also called observables) and generates some outputs called alarms. An alarm is
associated with a diagnosis condition, e.g. the detection of a given fault.

The objective of Fault Detection and Identification (FDI) analysis is to assess the quality of a given diagnoser. The
quality of the diagnoser may be assessed in terms of correctness and completeness (i.e., an alarm is raised if and only
if the corresponding fault has occurred). The existence of a (correct and complete) diagnoser for a given diagnosis
condition may depend on the level of observability of the system, i.e. the availability of a set of sensors that can be
used for the diagnosis. Diagnosability analysis has the purpose to assess the adequateness of the level of observability,
i.e. the possibility to implement a diagnoser for given diagnosis conditions, using the given observables. Namely, a
system is diagnosable w.r.t. a diagnosis condition if and only if there exists a (correct and complete) diagnoser for it.

In this paper we follow the approach described in [BCGT14, BCGT15], which describes a formal framework for
the design of FDI components.

We assume that a system is given, expressed as an STS S = 〈V, Vo,W,Wo, F, I, T 〉. A diagnosis condition,
denoted β, is a Boolean combination of atomic conditions, e.g. a fault (fault identification), or a disjunction of faults
(fault detection). A diagnosis condition can be evaluated on any point of a trace representing the execution of the
system. Based on the definition of a diagnosis condition, we define an alarm condition as the association between a
diagnosis condition and the raising of the corresponding alarm. For instance, an alarm condition may prescribe that an
alarm condition β is raised within a given delay (e.g., 5 time steps) after β has become true. Following [BCGT14], we
define three different patterns for alarm conditions, called exact delay, bounded delay and finite delay.

Definition 7.1 (Alarm Condition). Given an alarm A, a diagnosis condition β and a delay d ≥ 0, we define alarm
conditions as the following patterns:

1. EXACTDEL(A, β, d) specifies that whenever β is true, A must be triggered exactly d steps later and A can be
triggered only if d steps earlier β was true; formally, for any trace π of the system, if β is true along π at the time
point i, then A is true in π[i+ d] (completeness); if A is true in π[i], then β must be true in π[i− d] (correctness).

2. BOUNDDEL(A, β, d) specifies that whenever β is true, A must be triggered within the next d steps and A can be
triggered only if β was true within the previous d steps; formally, for any trace π of the system, if β is true along
π at the time point i then A is true in π[j], for some i ≤ j ≤ i+ d (completeness); if A is true in π[i], then β must
be true in π[j′] for some i− d ≤ j′ ≤ i (correctness).

3. FINITEDEL(A, β) specifies that whenever β is true,Amust be triggered in a later step andA can be triggered only
if β was true in some previous step; formally, for any trace π of the system, if β is true along π at the time point i
then A is true in π[j] for some j ≥ i (completeness); if A is true in π[i], then β must be true along π in some time
point between 0 and i (correctness).

We now define the notion of diagnosability for alarm conditions. Diagnosability is defined relative to a context,
i.e. a subset of traces of the system. The context is useful to restrict the set of possible executions of the system. For
instance, in cases where the occurrence of multiple faults is unlikely, we could restrict to executions with at most one
fault. As another example, we could restrict to executions where a given fairness constraint holds, e.g. we can assume
that a given component is switched on periodically.

Definition 7.2 (Diagnosability). Let S be a system, β a diagnosis condition and Ψ ⊆ ΠS a context. We say that:

1. EXACTDEL(A, β, d) is diagnosable in S iff for any pair of traces σ1,σ2 ∈ Ψ and for all i ≥ 0, if obs(σi+d
1 ) =

obs(σi+d
2 ) then σ1, i |= β iff σ2, i |= β.

2. BOUNDDEL(A, β, d) is diagnosable in S iff for any pair of traces σ1,σ2 ∈ Ψ and for all i ≥ 0 there exists a j,
i ≤ j ≤ i+ d, s.t. if obs(σj

1) = obs(σj
2) and σ1, i |= β then σ2, k |= β for some k, j − d ≤ k ≤ j.

3. FINITEDEL(A, β) is diagnosable in S iff for any pair of traces σ1,σ2 ∈ Ψ and for all i ≥ 0 there exists a j, j ≥ i,
s.t. if obs(σj

1) = obs(σj
2) and σ1, i |= β then σ2, k |= β for some k, k ≤ j.

A diagnoser can be formally defined as a (deterministic) STSD which is synchronously composed with the system
S. It can be proved that an alarm condition is diagnosable if and only if there exists a diagnoser for it [BCGT14].

The language for alarm conditions in Definition 7.1 is called Alarm Specification Language (ASL); it includes
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1NAME: alarm G1
2CONDITION: SC.G1.Gen StuckOff.mode != NOMINAL
3 TYPE: finite

Listing 17. An ASL specification for the TMG.

1 SC.G1.state
2CN.cmd G1

Listing 18. An observable specification for the TMG.

the patterns for exact delay, bounded delay and finite delay. The properties of correctness and completeness for ASL
patterns can be formalized in LTL (with past operators). For instance, for the BOUNDDEL(A, β, d) pattern, correctness
is given by the LTL property G(A → O≤dβ) whereas completeness is given by G(β → F≤dA). Diagnosability,
instead, can be expressed in temporal epistemic logic [BCGT14].

XSAP provides a few capabilities related to diagnosability and FDI. First, it enables the diagnosability check
for an alarm condition (checking the adequateness of given observables). Second, it is possible to synthesize a set
of observables that guarantee diagnosability for an alarm condition (synthesis of observables). Third, it supports the
synthesis of a diagnoser for an alarm condition (diagnoser synthesis). Finally, it is possible to assess the quality of a
diagnoser (effectiveness analysis).

7.2. Diagnosability, Fault Detection and Identification Analysis of the TMG

We now exemplify the diagnosability and FDI functionalities of XSAP on the TMG case study. In the model described
in Section 5.1, the controller can directly observe component faults (and repairs), therefore it has complete observabil-
ity over component faults. Here we are interested in analyzing the observability requirements of the TMG before the
controller is plugged into the system. Therefore, we start from a model of the system with an empty controller (we
keep only the interface of the module14).

We first illustrate diagnosability analysis. We consider, for instance, diagnosing a generic fault for a generator, e.g.
G1. Diagnosability takes as input an ASL specification and the list of observables. Example specifications are shown
in Listing 17 and Listing 18. The ASL specification defines an alarm called alarm G1 that is associated to an alarm
condition, of type finite delay, specifying that G1 is not in nominal mode. The list of observables includes the state of
the generator and the command sent to G1 by the controller. In other words, we are checking whether is it possible to
diagnose a fault of generator G1 eventually, with the given observables.

Running XSAP, the alarm condition is found to be non-diagnosable, and a pair of traces is returned as counterex-
ample. Intuitively, the pair is such that the two traces are observationally indistinguishable, however the fault manifests
itself in one trace and not in the other. Formally, according to Definition 7.2, we have a pair of traces σ1,σ2 and an
index i such that obs(σ1) = obs(σ2), σ1, i |= β and σ2, j 6|= β for all j. Such pair is called critical pair [BCGT15].
Fig. 18 shows the critical pair generated by XSAP, displaying a subset of the signals. The analysis of the critical pair
reveals that the alarm condition is not diagnosable, since generator G1 is never commanded to switch on. Since the
generator is never switched on, its fault has no effect on the state of the generator itself.

We can prove that the alarm condition is diagnosable under a more restrictive context. As an example, we add the
following line: ‘CONTEXT: G F [0,5] CN.cmd G1 = cmd on’ to the ASL specification in Listing 17. That is, we
assume that, in any execution, the generator is commanded to switch on within at most 5 steps. With this fix, the alarm
condition is found to be diagnosable. In fact, we can prove a stronger property, namely that the alarm condition is
bounded delay diagnosable, with a delay of 5 steps, under the given context. Delay 4, instead, generates a critical pair,
as expected.

We now exemplify the synthesis of observables. XSAP supports the generation of minimal sets of observables,
that guarantee diagnosability. The inputs to the analysis are the same as for diagnosability. This time, however, we list
as (potential) observables all the variables representing the internal state of components, and the powering information
for buses, for a total of 45 signals. Running XSAP, we obtain a set of observables of cardinality 1, shown in Fig. 19.
Namely, the alarm condition is diagnosable, and a diagnoser can be built by observing the internal state of G1. Note
that the powering information for buses cannot be used to infer the status of the generator, since when the generator is
commanded to switch on, we have no guarantee that the bus is connected to the generator. However, if we restore the
constraints in Listing 14 and the definition of the monitor in the controller module, then ‘SC.B1 poweredby G1 U’ and
‘SC.B1 poweredby G1’ can be shown to be alternative sets of observables, since in this case we can infer the status
of G1 by observing the consequences on bus B1. Furthermore, note that under the given context, it is not necessary to

14 The models used in this section are available in the XSAP distribution under examples/FDI.
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Fig. 18. Critical pair for the TMG.

1) −−−−−−−−−−−−−−−−−−−−−−−−−
> SC.G1.state

Fig. 19. Outcome of observables synthesis for the TMG.

observe the command sent to G1, since we rely on the fact that the command cmd on is guaranteed to be sent to G1
within at most 5 steps.

The result of the observables synthesis can be used as guidance to design a diagnoser. For instance, it is possible to
choose the set of observables needed for the diagnosis, depending on cardinality and/or cost considerations. In the case
of generator G1 for the TMG, we can choose to monitor either its internal state (on or off) or the power connection that
feeds B1 (in the scenario where ‘SC.B1 poweredby G1 U’ and ‘SC.B1 poweredby G1’ are possible observables).
This corresponds to putting a sensor on either G1 or the connection from G1 to B1. Monitoring such sensor makes the
model more realistic w.r.t. the model where the diagnoser directly observes internal faults in the components.

In the rest of this section, instead of modeling the diagnoser by hand, we use XSAP to illustrate how the diagnoser
can be synthesized automatically. Diagnoser synthesis in XSAP takes as input the model, the list of observables and an
ASL specification, and generates a diagnoser model, which is automatically integrated, i.e. synchronously composed,
with the original model. In particular, the diagnoser is implemented as an SMV module, which is instantiated in the
main module. We run XSAP and synthesize an FDI model for the generic fault of generator G1, using ‘SC.G1.state’ as
observable, and for an ASL specification with context and bounded delay with delay 5 (as for diagnosability analysis).
Running XSAP, we automatically obtain the integrated model including the alarm ‘alarm G1’. Listing 19 shows the
generated FDI module. The synthesis algorithm [BCGT14] generates an automaton that encodes the set of possible
states (called belief states) in which the system may be after each observation. The diagnoser is obtained by annotating
each belief state with the information on the alarm being satisfied or not. In particular, the signal ‘Kalarm G1’ (re-
spectively ‘Knalarm G1’ and ‘Ualarm G1’) annotates states where the diagnoser knows that the alarm must be raised
(respectively: knows that the alarm must not be raised; it is unknown whether the alarm must be raised).

The generated diagnoser can be checked against a set of properties to assess its quality (effectiveness analysis).
For instance, we can check completeness of the diagnoser with this property: ‘(G F [0,5] CN.cmd G1 = cmd on) ->
(G (SC.G1.Gen StuckOff.mode != NOMINAL -> (F [0,5] myfdir.myfd.Kalarm G1)))’, which is proved true by
XSAP.

8. Experimental Evaluation

In this section we experimentally evaluate the performance of XSAP on the TMG model, focusing on the FTA func-
tionality. In order to evaluate the scalability of the tool, we have generalized the TMG model and made it parametric in
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1MODULE FD(”SC.G1.state”)
2 VAR
3 state : 1 .. 27;
4 DEFINE
5 expr14 := next( state) = 15;
6 expr15 := next( state) = 4;
7 expr13 := next( state) = 16;
8 Kalarm G1 := ((((((((((( state = 11 | state = 26) | state = 24) | state = 23) | state = 13) | state = 9) | state = 21) | state = 25) |
9 state = 22) | state = 14) | state = 12) | state = 10);
10 Ualarm G1 := ((((((((( state = 8 | state = 18) | state = 6) | state = 3) | state = 20) | state = 16) | state = 5) | state = 7) |
11 state = 19) | state = 17);
12 Knalarm G1 := ((( state = 2 | state = 15) | state = 1) | state = 4);
13 sink state := state = 27;
14 INIT ( state = 1 | state = 27);
15 INVAR (!( state = 27) | !(”SC.G1.state” = on));
16 INVAR (!( state = 1) | ”SC.G1.state” = on);
17 TRANS case
18 next(”SC.G1.state”) = off : case
19 ( state = 26 | state = 25) : next( state) = 26;
20 state = 24 : next( state) = 25;
21 state = 23 : next( state) = 24;
22 state = 22 : next( state) = 23;
23 state = 21 : next( state) = 22;
24 state = 20 : next( state) = 21;
25 state = 19 : next( state) = 20;
26 state = 18 : next( state) = 19;
27 state = 17 : next( state) = 18;
28 state = 16 : next( state) = 17;
29 state = 15 : expr13;
30 ( state = 14 | state = 13) : next( state) = 14;
31 state = 12 : next( state) = 13;
32 state = 11 : next( state) = 12;
33 state = 10 : next( state) = 11;
34 state = 9 : next( state) = 10;
35 state = 8 : next( state) = 9;
36 state = 7 : next( state) = 8;
37 state = 6 : next( state) = 7;
38 state = 5 : next( state) = 6;
39 state = 4 : expr13;
40 state = 3 : next( state) = 5;
41 state = 2 : expr13;
42 TRUE : ( state = 1 & next( state) = 3);
43 esac;
44 TRUE : (next(”SC.G1.state”) = on & case
45 ( state = 20 | ( state = 19 | ( state = 18 | ( state = 17 | ( state = 16 | state = 15))))) : expr14;
46 ( state = 8 | ( state = 7 | ( state = 6 | state = 5))) : expr15;
47 state = 4 : expr14;
48 state = 3 : expr15;
49 state = 2 : expr14;
50 TRUE : ( state = 1 & next( state) = 2);
51 esac);
52 esac;

Listing 19. A synthesized FDI model for the TMG.

the number of components. Fig. 20 shows a parametric version of the TMG model with n buses, i.e with n generators
and 2n circuit breakers15, where n ≥ 3.

The requirements of the TMG can be generalized to the parametric model. In particular, requirement R3 (Bus
power source priority and source to bus path priority schemes) must be generalized to encompass the additional paths
of the system. There are several possible ways to generalize requirement R3. Out of the different possibilities, we
chose one, which we illustrate in Fig. 21 and 22 for the case where n = 5 (note that this extension is conservative, i.e.

15 In practical applications, it might be worth considering a more complex generalization of the model, namely one could increase the redundancy
of the bus connections, in order to increase the reliability of the overall system. However, the current model is sufficient for our purposes, namely
scalability evaluation.
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Fig. 20. Triple Modular Generator: parametric model.

BUS Highest priority . . . . . . . . . Lowest priority
B1 G1 G2 G3 G4 G5
B2 G2 G1 G3 G4 G5
B3 G2 G1 G4 G5 G3
B4 G2 G1 G3 G5 G4
B5 G2 G1 G3 G4 G5

Fig. 21. Bus power source priority (n = 5).

the case n = 3 is the same as described in Section 3). Specifically, we enforce the following properties. In absence of
faults, only two generators are switched on, namely G1 and G2, B1 is powered by G1 and all other buses by G2. For
buses B3, B4 and B5, powering via the corresponding generator (respectively, G3, G4 and G5) is the lowest priority
option. The remaining options, for all buses, are ordered from left to right (i.e., Gj has higher priority than Gk if and
only if j < k). Given a bus and a generator, there are two possible paths connecting them, and we choose the high
priority path to be the shortest one16. The other requirements (R1, R2, R4, R5, R6) are unchanged17.

We have implemented a generator, written in Python, that automatically generates the (nominal) SMV models,
given the parameter n. The corresponding extended models can be generated automatically as described in Section 5.3.
Note that the FEI specifications are unchanged, since they are defined on module types rather than on module in-
stances18. In the rest of this section we consider the models extended with the fault extension instructions in Listing 5.

The generator as well as the generated (nominal) models for n = 3, . . . , 20 can be found in the XSAP distribution
under examples/fe/triple modular generator/parametric models.

16 In the case where n is even and the two paths have the same length, we conventionally chose either the right or the left connection to be the high
priority path.
17 Similarly to the case where n = 3, it can be shown that requirements R4, R5 and R6 also hold for the generalized models.
18 The FEI specification may be affected if common causes are considered, since common causes can be defined on component instances. Here
we do not consider common causes.

Paths Priority B1 B2 B3 B4 B5

G1 High — BB1 BB2-BB1 BB4-BB5 BB5
Low — BB2-BB3-BB4-BB5 BB3-BB4-BB5 BB3-BB2-BB1 BB4-BB3-BB2-BB1

G2 High BB1 — BB2 BB3-BB2 BB5-BB1
Low BB5-BB4-BB3-BB2 — BB3-BB4-BB5-BB1 BB4-BB5-BB1 BB4-BB3-BB2

G3 High BB1-BB2 BB2 — BB3 BB4-BB3
Low BB5-BB4-BB3 BB1-BB5-BB4-BB3 — BB4-BB5-BB1-BB2 BB5-BB1-BB2

G4 High BB5-BB4 BB2-BB3 BB3 — BB4
Low BB1-BB2-BB3 BB1-BB5-BB4 BB2-BB1-BB5-BB4 — BB5-BB1-BB2-BB3

G5 High BB5 BB1-BB5 BB3-BB4 BB4 —
Low BB1-BB2-BB3-BB4 BB2-BB3-BB4 BB2-BB1-BB5 BB3-BB2-BB1-BB5 —

Fig. 22. Source to bus path priority (n = 5).
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n State vars Input vars Total Nr. bits
3 48 42 90 123
4 64 56 120 164
5 80 70 150 205
6 96 84 180 246
7 112 98 210 287
8 128 112 240 328
9 144 126 270 369

10 160 140 300 410
11 176 154 330 451
12 192 168 360 492
13 208 182 390 533
14 224 196 420 574
15 240 210 450 615
16 256 224 480 656
17 238 272 510 697
18 288 252 540 738
19 304 266 570 779
20 320 280 600 820

Table 1. TMG parametric models: statistics.

n Card # MCS PARAM BMC-PARAM
T(sec) M(Gb) T(sec) M(Gb)

3 4 26 3.03 0.06 0.94 0.06
4 5 72 17.35 0.09 2.85 0.07
5 6 182 92.41 0.12 12.63 0.09
6 7 436 3360.28 0.28 327.82 0.11
7 8 1010 TO - 24012.97 0.18
8 - - TO - TO -
9 - - TO - TO -

10 - - TO - TO -

Table 2. TMG parametric models: FTA for TLE ‘R2 false’.

Table 1 lists some statistics for TMG models (the extended models, i.e. those that are run in the experiments), for
n = 3, . . . , 20. The table lists the number of state variables, the number of input variables (including fault variables
and controller commands), the total number of variables (state + input variables) and the total number of bits (i.e.,
the total number of Boolean variables in the encoded model). The number of bits is higher than the total number of
variables, since some variables are enumerative and encoded with 2 or more bits.

The experiments have been run on a cluster of Linux machines running Scientific Linux 7.5, and equipped with 2.67
GHz Intel Xeon CPUs. In the rest of this section, we use XSAP to generate fault trees. We use two different algorithms.
The first algorithm (referred to as PARAM from now on) is based on parameter synthesis and IC3, and is described
in [BCMG15]. It computes minimal cut sets by increasing order (cardinality layers). The second algorithm (referred
to as BMC-PARAM from now on) uses BMC to collect the minimal cut sets up to a given depth (i.e., the depth is the
length of the encoded trace for BMC search) and then uses IC3 to close the induction (as in the first algorithm). The
second algorithm exploits the fact that the TMG model has a shallow depth, in particular minimal cut sets can be found
by searching up to a depth k = 2. In both cases, we set the option ’boolean conversion uses predicate normalization’,
which reduces the memory consumption.

In the first experiment, we evaluated the models for n up to 10 and ran FTA for the top level event corresponding
to the negation of invariant ‘R2 false’ (i.e., stating that at least one bus is not powered), as done in Section 6.3. We
set a time out of 3 days and a memory limit of 50Gb. The results are collected in Table 2. For each model, we list
the maximum cardinality of minimal cut sets, the total number of minimal cut sets and, for both the PARAM and
BMC-PARAM algorithms, the running time (in seconds; ‘TO’ stands for time out) and the maximum amount of used
memory (in Gb; ’MO’ stands for memory out). The experiments show that running time rapidly grows with n. The
maximum cardinality of the minimal cut sets also grows with n (empirically, we observe that the maximum cardinality
is n + 1 – this is fully proved for n up to 7). Clearly, the increase in the running time is justified by the dimension of
the models and the potential combinations of cut sets that have to be considered (for dimension n, the minimal cut sets
include combinations of at most n + 1 faults out of a total number of 5n faults; for instance, for n = 7, this is more
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n Card # MCS PARAM BMC-PARAM
T(sec) M(Gb) T(sec) M(Gb)

3 4 18 2.68 0.06 0.92 0.06
4 5 50 9.79 0.08 2.22 0.07
5 6 130 49.66 0.11 4.96 0.08
6 7 322 477.03 0.19 23.93 0.10
7 8 770 8503.48 0.42 124.29 0.14
8 9 1794 224468.26 1.17 99.22 0.19
9 10 4098 TO - 1415.11 0.35

10 11 9218 TO - 760.80 0.94
11 12 20482 TO - 5170.52 2.74
12 13 45058 TO - 7575.87 8.87
13 14 98306 TO - 9806.41 29.98
14 - - TO - - MO
15 - - TO - - MO

Table 3. TMG parametric models: FTA for TLE ‘B1 is not powered’.

than 3∗107 possible combinations). From the results, we can see that BMC-PARAM performs consistently better than
PARAM and is able to complete the case n = 7, for which PARAM times out.

In the second experiment, we want to analyze the impact of the TLE on the FTA computation. In particular, in the
first experiment the TLE (‘At least one bus is not powered’) is a disjunctive formula, hence some of the generated cut
sets are logically analogous, due to symmetries, i.e. they represent similar faulty configurations that affect a different
bus. In the second experiment we use the TLE ‘!SC.B1.is powered’ (‘Bus B1 is not powered’). Table 3 collects the
results. This time we run experiments for models up to n = 15. The results shows that for this TLE, the running
time decreases w.r.t. the first experiment, along with the number of generated minimal cut sets (for a given n). More in
detail, algorithm PARAM is able to complete the analysis up to n = 8, whereas BMC-PARAM is able to reach n = 13,
computing more than 98.000 minimal cut sets. As in the first experiment, BMC-PARAM performs consistently better
than PARAM. The improvement in performance in the second experiment, opens the opportunity to optimize the
generation of minimal cut sets for a disjunctive top level such as the one in the first experiment. In particular, a
possible strategy would be to separately generate minimal cut sets for the n top level events ‘Bus Bi is not powered’,
for i = 1, . . . , n, and then combine the results (the combination would imply removing duplicated and possibly non-
minimal cut sets). The results in Table 3 suggest that this strategy may be effective. We leave this investigation as
future work.

In the third experiment, we run FTA again for the TLE corresponding to the negation of invariant ‘R2 false (‘At
least one bus is not powered’), but this time we limit the maximum cardinality of the minimal cut sets that we want to
compute. Limiting the maximum cardinality of the cut sets is usually justified in standard practice, since high-order
cut sets typically have very low probabilities and can be disregarded, since the contribution to the overall probability of
the TLE is marginal. Indeed, in standard practice it is infrequent to compute minimal cut sets for orders higher than 4.
Using XSAP, we can formally guarantee the above argument (‘The contribution to the overall probability of the TLE
of high-order cut sets is marginal’). In fact, using the anytime computation functionality described in [BCMG15], we
can compute a lower and an upper bound for the probability of the TLE after completing each cardinality layer. The
upper bound provides us an over-approximation of the probability of the TLE, and by comparing the lower and the
upper bound (under- and over- approximations) we can evaluate the potential error (the quality of the approximation).

We run XSAP for models up to n = 20, using anytime computation for a maximum cardinality of 4. We set a
time out of 3 days and a memory limit of 100Gb. The results are collected in Table 4. The table lists the number of
cut sets found for cardinalities 3 and 4, the total number of cut sets, the upper bound probability, the worst-case error
(computed as the difference between the upper and the lower bound) and, for both the PARAM and BMC-PARAM
algorithms, the running time (in seconds) and the memory consumption (in Gb) As we can see from the results, the
worst-case error is negligible w.r.t. the upper bound probability in all cases (excluding MO cases), in fact the ratio
between the error and the probability ranges between 10−14 and 10−8 for cases n = 3, . . . , 18. Note that for n = 19
and n = 20 (MO cases), the error is computed based on the cut sets of order 3, since layer 4 is not guaranteed to
be complete – even in those cases, the error is acceptable, since it is lower than 1%. From the results, it is also clear
that BMC-PARAM performs better in time than PARAM, except in a few cases with lower cardinalities, although at a
price of a higher memory consumption.

If we compare the outcome of the third experiment w.r.t. the first experiment (sharing the same TLE), as expected,
we can see that the computation time significantly improves in the third experiment, where we limit the maximum
cardinality of the minimal cut sets. Indeed, we are able to compute a precise over-approximation [BCMG15]of the
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n CS3 CS4 Total Prob (upper bound) Error PARAM BMC-PARAM
T(sec) M(Gb) T(sec) M(Gb)

3 14 12 26 1.3639999670e−21 5.45e−36 2.90 0.06 0.90 0.06
4 8 32 40 4.4000150850e−23 7.73e−35 9.50 0.08 12.75 0.09
5 10 20 30 5.5000005550e−23 4.29e−34 30.52 0.11 27.64 0.11
6 12 24 36 6.6000006661e−23 1.32e−33 67.11 0.15 64.38 0.15
7 14 28 42 7.7000007773e−23 3.32e−33 183.28 0.23 147.13 0.23
8 16 32 48 8.8000008887e−23 7.22e−33 372.61 0.28 376.68 0.32
9 18 36 54 9.9000010004e−23 1.42e−32 691.38 0.38 787.55 0.42

10 20 40 60 1.1000001113e−22 2.56e−32 1778.43 0.52 1550.48 0.58
11 22 44 66 1.2100001225e−22 4.35e−32 3142.81 0.87 2306.01 0.88
12 24 48 72 1.3200001339e−22 7.02e−32 6325.30 1.08 5475.07 1.38
13 26 52 78 1.4300001454e−22 1.09e−31 16029.83 2.00 7218.19 2.18
14 28 56 84 1.5400001570e−22 1.63e−31 28712.51 2.86 13716.65 3.24
15 30 60 90 1.6500001689e−22 2.36e−31 40890.66 4.08 32527.51 6.61
16 32 64 96 1.7600001809e−22 3.34e−31 76266.90 8.53 41899.93 11.45
17 34 68 102 1.8700001933e−22 4.61e−31 124112.16 16.99 75041.16 23.32
18 36 72 108 1.9800002061e−22 6.24e−31 237378.51 39.46 123761.47 46.68
19 38 - - 2.1075725385e−22 1.76e−24 - MO - MO
20 40 - - 2.2217644002e−22 1.18e−24 - MO - MO

Table 4. TMG parametric models: anytime computation of MCS for TLE ‘R2 false’ and maximum cardinality 4.

probability of the TLE and all the minimal cut sets up to cardinality 4, for all models up to n = 18, whereas in the
first experiment we time out for n ≥ 8. These results, along with the estimation of the worst-case error, show the
effectiveness of the anytime computation of XSAP and the feasibility of automated FTA for models of significant
(realistic) size (e.g., the model for n = 18 is encoded with more than 700 Boolean variables, and it includes 90
different faults).

9. Related Work

In this section we discuss some related work.

9.1. Model-Based Safety Assessment: Process, Tools and Applications

This work is based on the XSAP platform for safety analysis. XSAP is based on the concepts of automated fault
injection and model extension, and on the idea of Model-Based Safety Assessment (MBSA). These ideas have been
originally presented in works such as [BVÅ03, JMWH05, BV10, BCK+11].

The FSAP [BV07] platform is the predecessor of XSAP. Originally, FSAP has been developed in the following
European projects: ESACS [BVÅ03], ISAAC [ABB+06], and MISSA [MIS15]. XSAP is a full re-implementation
of FSAP, and it provides numerous extensions. Among them, the support for infinite-state systems, extended and
customizable libraries to define fault modes and fault dynamics, diagnosability and fault detection and identification
analysis. In addition, XSAP provides novel routines for fault tree generation, namely the original BDD-based rou-
tines [BCT07] are complemented by SAT-based and SMT-based routines, including routines based on IC3 [BCMG15].

Recent industrial applications of MBSA are described in, e.g. [BCC+03, ANY+12, GFB+14, BCK+14, BCP+15].
XSAP is the core verification engine for many other tools. It has been used in several industrial projects funded by
the European Space Agency [Eur07, Eur10, Eur11, Eur13a, Eur13b]. Finally, XSAP is currently being used in a joint
research and development project, in the avionics domain, between FBK and The Boeing Company [BCP+15] and in
another joint project between FBK and Bosch, in the automotive domain.

XSAP is also used as a back-end for the COMPASS toolset [BCK+11, BCK+14], see also [BBC17]. In COM-
PASS the fault models must be modeled manually using the SLIM language (a variant of AADL), whereas in XSAP
the model extension is based on a customizable library for defining fault modes and their dynamics.

Examples of alternative platforms for MBSA are based on Altarica/OCAS [BCS02, PBB+13, BCL+15], Scade [DÅ04,
AH05], and Statemate [PCV+06]. Generally, these tools support a subset of the features implemented in XSAP (FTA,
FMEA, or some limited form of model extension).

Regarding scalability of the the routines implemented in XSAP, we refer the reader to [BCL+15] for a comparison
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with Altarica/OCAS (carried out using a license courtesy of Dassault Aviation), and to [BCMG15] for an exhaustive
evaluation of the routines based on IC3.

9.2. Fault Tree Analysis

MBSA tools, including XSAP, have been used to automate the generation of traditional artifacts of safety assess-
ment such fault trees and FMEA tables. The focus on these artifacts is due to the fact that they are used for system
certification in many industries, for instance in the avionics and aerospace sectors [SAE96, ECS].

XSAP implements fault tree generation routines based on BDDs [BCT07] and on SAT/SMT [BCMG15]. The
latter are based on IC3 [BCMG15] and parameter synthesis [CGMT13], and implement a layered computation of
the Minimal Cut Sets (by cardinality). A similar layered approach is presented in [ADS+04], however it is based on
bounded model checking and it does not address the problem of convergence.

Hip-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies) [Pap00, PM01] is a framework that
supports mechanical synthesis of fault trees, based on the structure of the design model. The user has to manually
identify the component failure modes and model the local failure behaviour using a tabular technique. The focus of the
Hip-HOPS lies in organizing fault trees in accordance with the structure of the design model, rather than in generating
fault trees automatically from a behavioral model, as in XSAP.

In [BCMT14], the authors present an approach to build hierarchical fault trees following the system structure.
The approach has been implemented in a contract-based framework implemented in the ocra platform [ocr19]. In this
context, faults are represented by contract violations. A different approach to generate hierarchical fault trees is based
on retrenchment [BB13a, BB13b]. This framework focuses on the relations between nominal and faulty behaviors,
and does not address implementation issues.

9.3. Diagnosability, Fault Detection and Identification Analysis

For diagnosability, fault detection and identification we refer to the formal framework described in [BCGT14, BCGT15]
([BCGT14] focuses on synchronous systems, whereas [BCGT15] extends the framework to the asynchronous case).
This work proposes a pattern based language for the specification of diagnosis and alarm conditions, and supports
different forms of delay (exact, bounded and finite). Additional aspects accommodated in the framework are diagnos-
ability [SSL+96], the notion of maximality of the diagnoser, and the notion of trace diagnosability. The latter enables
reasoning on systems that are only locally diagnosable and extends the previous work such as [CPC03]. This frame-
work has been evaluated in several projects funded by the European Space Agency, such as AUTOGEF [ANY+12]
and FAME [GFB+14, BBC17], on a case study based on the EXOMARS Trace Gas Orbiter.

The pattern-based language of [BCGT14, BCGT15] is expressed in epistemic temporal logic [HV89]. It is called
Alarm Specification Language with Epistemic operators (ASLK). Here, the knowledge operator is used to express
the certainty of a condition, based on given observations. Diagnosis and alarm conditions are expressed in LTL with
past operators, whereas epistemic logic is needed to formalize the concepts of trace diagnosability and maximality.
We refer the reader to [ELMV11] and [Hua13] for alternative approaches that formalize diagnosability in epistemic
logic. However, these works are limited to finite-delay diagnosability, and do not consider notions such as trace diag-
nosability.

Within the framework of [BCGT14, BCGT15], it is possible to validate a given set of diagnosability require-
ments [CRST12] and to verify whether a candidate diagnoser satisfies a given set of requirements. Verification and
validation can be performed using a a model checker for temporal epistemic logic such as MCK [GVDM04] or using
a model checker for LTL (in case the specification falls into the LTL fragment). The framework also addresses the
automated synthesis of the diagnoser based on a construction inspired by [SSL+96] and Schumann [Sch04]. Finally,
[BBCO12] addresses the problem of synthesizing cost-optimal sets of observations.

For a review of some recent literature on fault management systems, diagnosability, fault detection and identifica-
tion, and the relations with the framework presented in [BCGT14, BCGT15], we also refer the reader to [Boz17].

9.4. Analysis of Power Systems

Evolution to a More Electric Aircraft (MEA) [Ray18] has a significant impact on the design of electrical power
systems. These systems tend to have more generators and a more highly redundant distribution system. Similar con-
siderations apply to the electrical power industry. Manual analysis, based on the explicit enumeration of the faulty
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configurations, for such systems is impractical and error-prone, if not impossible, making the use of formal, auto-
mated techniques, highly recommended.

A recent effort in this direction is the formulation of a challenging case study [Bou17], to be used as a benchmark
for modeling and verification technologies. The case study is an emergency power supply system for a nuclear power
plant, with redundancy characteristics and repairable components, and complex failures (in function and on demand,
common cause failures). In [Bou17] the case study is formalized as a reliability model based on BDMP (Boolean
logic Driven Markov Processes), and some partial reliability results are provided. Recently, a workshop has been
organized [EDF19], to present and compare different tools and methodologies applied to the case study.

10. Conclusions and Future Work

In this paper we described an industrial case-study that represents a redundant on-board power supply with reconfigu-
ration policy. The case-study is non-trivial from both the modeling and the verification viewpoint, due to the presence
of complex correctness and priority requirements for the controller, and to the high number of faulty configurations
that have to be dealt with.

We explained in detail the modeling aspects of the case study, and provided a general modeling strategy that
addresses the implementation of the requirements and the automatic synthesis of a controller that satisfies them by
construction. In particular, our model implements a highly complex reconfiguration policy, and is able to address in
a principled way the dependencies between the different requirements for the controller (namely, it solves conflicts
between admissible powering options for different buses). We think that this modeling strategy is very general, and
can be adapted to a variety of case studies that feature similar characteristics.

We applied our modeling and verification to a parametric version of the case study, and showed that our verification
tools scale to models of much bigger size, making our methodology suitable for the analysis of modern systems in the
aerospace and energy sectors.

As part of our future work, we plan to extend our approach to hybrid systems, and apply it to a challenging case
study from the nuclear power sector [Bou17] and to relay-based circuits in the railway domain. Preliminary work has
been done in modeling similar systems using Switched Multi-Domain Linear Kirchhoff Networks [CMS17, CCM+18]
and analyzing them using SMT. We also intend to extend our technology with techniques such as partitioning and
abstraction, in order to improve the scalability even further. Finally, we would like to extend XSAP by incorporating
other analyses such as architectural trade studies, carried out in the early phases of development [BCM19].
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[ABB+06] O. Akerlund, P. Bieber, E. Böde, M. Bozzano, M. Bretschneider, C. Castel, A. Cavallo, M. Cifaldi, J. Gauthier, A. Griffault, O. Lis-
agor, A. Ludtke, S. Metge, C. Papadopoulos, T. Peikenkamp, L. Sagaspe, C. Seguin, H. Trivedi, and L. Valacca. ISAAC, a framework
for integrated safety analysis of functional, geometrical and human aspects. In Proc. ERTS, January 2006. Tolouse.
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A. Appendix: Analyzing the TMG Model Using XSAP

The analysis of the TMG model, documented in this paper, in based on XSAP release 1.3.0, which can be downloaded
at https://xsap.fbk.eu.

We report below the command lines to be used for reproducing the results in the paper. If not otherwise stated,
we use the python interface provided by the tool, in a Linux environment, however the same results can be replicated
using XSAP via its interactive shell. Details about XSAP scripts and commands can be found in the user manual,
distributed with the tool.
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Section 5.3

We assume to run the commands from the folder examples/fe/triple modular generator.

$> cd examples/fe/triple_modular_generator

Model Extension

$> python ../../../scripts/extend_model.py -v SC_TMG.smv SC_TMG_prob.fei

Similarly for other fault extension instructions (suffix .fei) files.

Section 6.1

We assume to run the commands from the folder examples/fe/triple modular generator.

$> cd examples/fe/triple_modular_generator

Functional Verification Functional verification can be performed using the NUXMV model checker. The NUXMV
commands are exposed in the XSAP shell.

$> ../../../bin/xSAP -int -dynamic out/extended_SC_TMG.smv
$> go
$> go_bmc
$> check_invar_ic3
$> check_ltlspec_ic3
$> check_ctlspec
$> show_property

Section 6.3

We assume to run the commands from the folder examples/fe/triple modular generator.

$> cd examples/fe/triple_modular_generator

Fault Tree Generation

$> python ../../../scripts/compute_ft.py -v --smv-file out/extended_SC_TMG.smv \
--fms-file out/fms_SC_TMG.xml --prop-name R2_false --probability \
--engine ic3 -b

The list of minimal cut sets and their statistics are listed in the log file out/xsap compute ft.out.

$> cat out/xsap_compute_ft.out

The fault tree can be visualized using the fault tree viewer.

$> python ../../../scripts/view_ft.py -v \
--events-file out/extended_SC_TMGevents.txt \
--gates-file out/extended_SC_TMGgates.txt

The symbolic probability function can be generated by adding the option --symbolic.
Analysis with common causes and latent faults can be obtained by first extending the model with the desired fault

extension instructions (suffix .fei) file, and then re-running fault tree generation.

FMEA Table Generation

$> python ../../../scripts/compute_fmea_table.py -v \
--smv-file out/extended_SC_TMG.smv --fms-file out/fms_SC_TMG.xml \
--prop-names R2_false -N 3
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Similarly for other cardinalities.
The FMEA table is generated in file out/extended SC TMGfmea table.txt.

$> cat out/extended_SC_TMGfmea_table.txt

Section 7.2

We assume to run the commands from the folder examples/FDI/diag.

$> cd examples/FDI/diag

Diagnosability Analysis

$> python ../../../scripts/check_diagnosability.py \
--smv-file ../extended_SC_TMG_empty_controller.smv --asl-file G1.asl \
--observables-file G1_observables.obs --engine ic3

Traces can be inspected using the trace viewer.

$> python ../../../scripts/view_trace.py \
__xsap_prefix__extended_SC_TMG_empty_controller_trace1_A.xml

$> python ../../../scripts/view_trace.py \
__xsap_prefix__extended_SC_TMG_empty_controller_trace1_B.xml

Similarly for other ASL specification files, namely G1 with context.asl and G1 with context bounded.asl.

Observables Synthesis

$> python ../../../scripts/minimize_observables.py \
--smv-file ../extended_SC_TMG_empty_controller.smv \
--asl-file G1_with_context.asl --observables-file full_observables.obs

Diagnoser Synthesis

$> python ../../../scripts/synthesize_fd.py \
--smv-file ../extended_SC_TMG_empty_controller.smv
--asl-file G1_with_context_bounded.asl \
--observables-file G1_state.obs --out-file G1_synthesized_model.smv

The output model is generated in file G1 synthesized model.smv.
Completeness of the diagnoser can be verified as follows (similarly to functional verification).

$> ../../../bin/xSAP -int -dynamic G1_synthesized_model.smv
$> go_bmc
$> check_ltlspec_ic3 -p"(G F [0,5] CN.cmd_G1 = cmd_on) -> \

(G (SC.G1.Gen_StuckOff.mode != NOMINAL -> \
(F [0,5] __myfdir.myfd.Kalarm_G1)))"

Section 8

We assume to run the commands from the folder examples/fe/triple modular generator/parametric models.
In the commands below, replace X with i for i = 3, . . . , 20, to analyze the corresponding parametric model.

Model Extension

$> python ../../../../scripts/extend_model.py -v SC_TMG_X.smv ../SC_TMG_prob.fei

We provide below the commands to run fault tree analysis. We list the command for the PARAM algorithm,
followed by the one for the BMC-PARAM algorithm.

The list of minimal cut sets and their statistics can be retrieved in the log file out/xsap compute ft.out.
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Fault Tree Generation, Table 2

$> python ../../../../scripts/compute_ft.py -v \
--smv-file out/extended_SC_TMG_X.smv --fms-file out/fms_SC_TMG_X.xml \
--prop-name R2_false --probability --engine ic3 -b

$> python ../../../../scripts/compute_ft.py -v \
--smv-file out/extended_SC_TMG_X.smv --fms-file out/fms_SC_TMG_X.xml \
--prop-name R2_false --probability --engine bmc_ic3 -k 2 -b

Fault Tree Generation, Table 3

$> python ../../../../scripts/compute_ft.py -v \
--smv-file out/extended_SC_TMG_X.smv --fms-file out/fms_SC_TMG_X.xml \
--prop-text "(! SC.B1.is_powered)" --probability --engine ic3 -b

$> python ../../../../scripts/compute_ft.py -v \
--smv-file out/extended_SC_TMG_X.smv --fms-file out/fms_SC_TMG_X.xml \
--prop-text "(! SC.B1.is_powered)" --probability --engine bmc_ic3 -k 2 -b

Fault Tree Generation, Table 4

$> python ../../../../scripts/compute_ft.py -v \
--smv-file out/extended_SC_TMG_X.smv --fms-file out/fms_SC_TMG_X.xml \
--prop-name R2_false --probability --engine ic3 -b --faults-bound 4

$> python ../../../../scripts/compute_ft.py -v \
--smv-file out/extended_SC_TMG_X.smv --fms-file out/fms_SC_TMG_X.xml \
--prop-name R2_false --probability --engine bmc_ic3 -k 2 -b --faults-bound 4
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