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Abstract. Reliability is a fundamental property for critical systems. A thorough evaluation of the reliability is required
by the certification procedures in various application domains, and it is important to support the exploration of the
space of the design solutions.

In this paper we propose a new, fully automated approach to the reliability analysis of complex redundant architec-
tures. Given an abstract description of the architecture, the approach automatically extracts a fault tree and a symbolic
reliability function, i.e. a program mapping the probability of fault of the basic components to the probability that the
overall architecture deviates from the expected behavior.

The proposed approach heavily relies on formal methods, by representing the architecture blocks as Uninterpreted
Functions, and using the so-called miter construction to model the deviation from the nominal behavior. The extraction
of all the deviation conditions is reduced to an AllSMT problem, and we extract the reliability function by traversing
the Binary Decision Diagram corresponding to the quantified formula. Predicate abstraction is used to partition and
speed up the computation.

The approach has been implemented leveraging formal tools for model checking and safety assessment. A thorough
experimental evaluation demonstrates its generality and effectiveness of the proposed techniques.

Keywords: Redundancy Architectures; Triple Modular Redundancy (TMR); Reliability Analysis; Fault Tree Analy-
sis (FTA); Satisfiability Modulo Theory (SMT); Equality and Uninterpreted Functions (EUF); Predicate Abstraction

1. Introduction

A key property in high-dependability, safety critical systems is the ability to continue to operate correctly even in
presence of faults. This property, known as fault tolerance, can be achieved in many different ways (e.g., [KK07]).
Among these, redundancy is one of the most used: components carrying out important functions are replicated, so
that faulty ones can be identified and excluded upon reconfiguration, without compromising the overall functionality.
An example of a widely adopted architectural pattern is Triple Modular Redundancy (TMR)[AS74, AL81, DR01,
FM04, TIC+05, JW10]. TMR consists in combining three replicated components, running in parallel, by means of a
two-out-of-three majority voter. This approach guarantees that the generated output is correct even if one component
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fails, and has been used since the early days of computer-based systems, as in the 1969 Saturn Launch Vehicle Digital
Computer [Cor64].

In order to design systems that are better equipped to deal with faults, many forms of analysis are required. At a
qualitative level, it is important to guarantee that the system is able to tolerate a given number of faults, i.e. to operate
correctly even when one or more basic components fail. At the quantitative level, it may be important to compute the
reliability of the system, i.e. the probability of correct operation, as a function of the fault probability for the basic
elements of the system.

Despite these practical needs, the analysis of architectures based on redundancy is a very heavy task, due to the lack
of specific and automated techniques. Even recent results [HTK10] rely on a substantial amount of manual activity,
carried out with “paper-and-pencil” techniques, and are limited by substantially simplifying hypotheses (e.g., that all
the computing modules have the same failure probability).

In this paper, we propose a new approach to the reliability analysis of redundant architectures, which covers dif-
ferent types of TMR schemas. The user models the system under analysis using an architecture description language,
where the components are equipped with sets of Boolean fault variables, which determine the behavior when one or
more faults occur. Additionally, it is possible to specify the behavior of individual components as a function over the
reals. The subsequent phases are completely automated. First, a model of the deviation of the system under analysis
from its nominal behavior is built. Such a deviation can be seen as a feared event, also known as Top-Level Event
(TLE). Then, the set of all fault configurations, also referred to as “cut sets” (CS), is computed [VSD+02]. Intuitively,
a CS is a set of faults under which the TLE occurs (i.e., the redundant architecture deviates from its nominal behavior).
Once the cut sets are computed, they can be arranged into a fault tree, and they can be used to analyze the level of
fault tolerance of the architecture: for example, if the TLE is only caused by cut sets containing at least two faults,
it is possible to conclude that the system always tolerates one fault (i.e., there is no single point of failure). From the
set of CS, it is also possible to extract a reliability function for the architecture under analysis, in form of a (program
implementing a) mapping from the fault probability for the basic faults to the probability of the TLE. The reliability
function can be evaluated to compute the probability of the TLE for different probabilities of the individual blocks,
and to compare different choices, thus supporting the exploration of the design space.

The approach relies on the use of various formal techniques. We work in the framework of Satisfiability Mod-
ulo Theories (SMT) [BSST09], which is satisfiability with respect to some background mathematical theory. The
notation SMT (T ) is used to indicate the dependency on the theory T . Basic blocks are represented in the the-
ory of Equality and Uninterpreted Functions (EUF). Namely, an uninterpreted function is used to represent the
behavior of a component as a generic function over the reals. Redundancy is modeled by reusing the same func-
tion symbols, combined with the circuitry representing the voting mechanism. The occurrence of faults is modeled
with the introduction of Boolean fault variables. The model of the deviation is then an SMT formula with respect
to the theory of EUF, written an SMT (EUF) formula. This formula is obtained with a so-called miter [Bra93]
construction between two copies of the architecture model, where one of the copies, acting as a reference for the
nominal behavior, is constrained not to fail. We leverage automated techniques from Model-Based Safety Analysis
(MBSA) [JHMW06, BCT07, BCK+14, BCP+15] for the construction of the set of CSs. Within this framework, this
computation reduces to an AllSMT problem [LNO06] on the miter formula, where the satisfying assignments to the
fault variables correspond to fault configurations. The extraction of the reliability function is based on the analysis of
the Binary Decision Diagram [Bry86] corresponding to the set of CSs.

Systems of realistic size may be associated with huge numbers of cut sets. Thus, the direct use of AllSMT [LNO06]
for its computation turns out to be inefficient, due to the enumerative nature of the algorithm that ends up constructing
the resulting formula in DNF.

We thus propose a new method for the compositional computation of the CSs. The key technical insight consists
in reducing the problem to an equivalent Boolean problem by means of predicate abstraction [GS97]. We devised a
two-steps method for the computation of the CSs for a given architecture. First, we combine the abstraction of the
individual components under a suitable set of predicates, hence obtaining a purely Boolean model. Thus, we trade a
huge AllSMT computation for several SMT-based quantifier eliminations, one per TMR type. Second, we compute the
fault tree for such model using BDD-based projection techniques [BCT07]. We prove that the approach is sound, i.e.,
the fault trees computed on the abstract system are the same as the ones computed directly on the original, concrete
system. This results in an algorithm where the computation is a highly structured combination of BDD-based quantifier
eliminations. The compositional method is essential to our approach, since a flat analysis would lead to a combinatorial
explosion among unrelated Boolean variables.

We implemented the approach by leveraging several existing tools for formal reasoning. The OCRA system [CDT13]
is used to specify the system architecture. The NUXMV model checker [CCD+14], which relies on the SMT solver
MATHSAT [CGSS13], is used for predicate abstraction and quantifier elimination. The XSAP platform for model-
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based safety assessment [BBC+16] provides the algorithms for the computation of CSs and supports the extraction of
reliability functions. The tools support the process by providing the construction of the miter, and a comprehensive
library of predefined redundancy patterns, including multiple TMR blocks.

The approach was experimentally evaluated on a number of examples and architectures of interest. The results
demonstrates the following key properties. First, the method is very general: thanks to the expressive modeling lan-
guage, it is possible to describe arbitrary redundancy architectures (e.g., [AS74, Yeh96, LJL07, HTK10, BCP+15,
Mat16]). Second, the approach is fully automatic. The only requirement to the user is the modeling of the architecture
using a set of guidelines. The output is a fault tree and a reliability function in form of an executable program, which
can be used then for design space exploration. Third, the approach is highly scalable. The compositional method based
on predicate abstraction proves to be dramatically superior to the concrete one, and allows us to analyze some classical
architectures in a fraction of a second. Such a significant improvement, compared to classical techniques, enables the
possibility to analyze larger systems, as well as evaluate a broader set of alternative architectures in the same amount
of time.

This paper is organized as follows. In Section 2 we discuss some relevant related work. In Section 3 we present
some logical background. In Section 4 we describe redundancy architectures. In Section 5 we formally define the
problem of reliability analysis. In Section 6 we describe the overall flow of our approach. In Section 7 we present
the application of predicate abstraction for cut sets computation. In Section 8 we describe the implementation and the
experimental evaluation. In Section 9 we draw some conclusions and outline directions for future work.

2. Related work

Analysis of redundant architectures

Our work is close to the one presented in [HTK10], and extends it along three main directions: i) [HTK10] presents
an ad-hoc algorithm that can analyze the reliability of computational chains based on Triple Modular Redundancy
with one voter. The user is required to provide the conditional probability of failures, for each pair of input and output
port. Our approach requires only a formal model of the architecture, and safety and reliability analyzes are completely
automated; ii) our approach is much more general, and deals not only with linear structures but also with tree- and
DAG-like structures, and with a much wider class of TMR blocks; iii) the method in [HTK10] requires the user to
provide a level of discretization. Our technique, instead, is purely symbolic, and generates a precise, closed form of
the reliability function, where no discretization is required.

Other techniques to analyze TMR-based architectures are based on Monte Carlo simulations. For instance, [LJL07]
relies on this technique in order to evaluate chains of TMR shift registers. The simulation based approaches do not
provide exhaustive evaluation of the system, and they require a behavioral definition of the modules.

The modeling technique that we propose in this paper may recall the Reliability Block Diagrams (RBD) [Čep11],
which are used to describe functional dependencies between architectural components. However, our approach is
strictly more expressive, since we are not limited to describe (generic) component dependencies but we can also pro-
vide interpreted behaviors, as well as more detailed dependencies. Our modeling framework is similar to the relational
language introduced in [JS91]. In this work, we propose the use of SMT techniques to automate the reasoning part.

A configuration logic for describing parametric architectures is presented in [MBBS15]. Differently, in this paper
we do not consider architectures with a parametric number of interacting components and adaptive interfaces, but we
provide ways to analyze in full detail the reliability of static networks. Extending this approach to analyze networks
with variable topology is the object of future work.

Formal analysis of redundant architectures

The techniques based on Markov Decision Process and Probabilistic Petri Nets [KKZ05, HKNP06, Tri02, CMT89,
SIQW95] are widely used in industry for the quantitative evaluation and reliability analysis. However, such approaches
cannot provide a uniform system modeling and completely automated process, and in fact, the link between the relia-
bility evaluation and the qualitative safety analysis is performed manually.

The use of formal methods techniques to analyze redundancy architectures is rather limited. In [LQJ], the Com-
municating Sequential Processes (CSP) formalism is used to model and prove the correctness of a single TMR stage.
The work is mostly manual, and does not include any quantitative analysis. [Jan97] provides a bi-simulation based
technique to prove fault tolerance of systems modeled using calculus of communicating systems (CCS). In [ZLMR09],
a module based on redundancy is designed within the formalism of timed automata, and analyzed using the Uppaal
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model checker. This work focuses on the specific features of the design, and does not consider multi-staged architec-
tures.

[LQJ] can aid the verification and reliability analysis in the limited case for TMR chains. However, such approaches
cannot be generalized in order to cover a full set of architectural patterns.

Model based safety assessment

This work can be framed within the line of Model-Based Safety Assessment (MBSA) [JHMW06]. The perspective
of MBSA is to represent the system by means of a formal model, and perform safety analysis (both for preliminary
architecture and at system-level) using formal verification techniques. The integration of these techniques allows safety
analysis to be more precise and more cost-effective. Such techniques must be able to verify functional correctness and
assess system behavior in presence of faults [BVÅ+03, ABB+06, BV10, JH05, BS97].

At the core of model based safety assessment is the ability to exhaustively analyze the behaviors of dynamical
systems. Traditionally, dynamical systems are modeled as finite state systems: their state can be represented by means
of assignments to a specified set of variables [Hol97]. Techniques for Model-Based Safety Assessment include Fault
Tree Analysis [VGRH81] and Failure Mode and Effects Analysis (FMEA), which can be performed automatically by
reduction to symbolic model checking [BV10, BCK+11, BV07, BCT07, BCL+11, BCP+15].

Engines

A key difference with respect to our approach is that the existing techniques for MBSA focus on the analysis of the
behavior of dynamical systems, whereas our approach aims at evaluating characteristics of redundancy architectures,
independently of components’ behavior. More specifically, we rely on the calculus of Equality and Uninterpreted
Functions (EUF) and we make use of Satisfiability Modulo Theory (SMT) techniques for their analysis [BGL+00,
FHT+07]. Moreover, we extend this technique to a partitioned quantification that relies first on SMT and afterwards
on a BDD-based [Bry92] approach.

The analyzes of SMT formulas based on EUF theory can be approached also by applying Ackermann expan-
sion [LS04, BCF+06], thus substituting the function symbols with a set of constraints. However, while such transfor-
mation preserves satisfiability, it does not guarantee equivalence, which is fundamental when dealing with minimal
cut sets computation.

3. Background

We work in the setting of first order logic. Individual terms are either constants, individual variables, or the application
of function symbols of arity n to n terms. Atoms are either Boolean variables, or the application of an n-ary relational
symbol to n terms. Formulae are either the truth values> and⊥, atoms, the application of an n-ary Boolean connective
(e.g. unary negation ¬, binary conjunction ∧, disjunction ∨, implication→, double implication↔), or the application
of a quantifier (existential ∃, universal ∀) to a variable and a formula. We write φ[v/ψ] to denote the substitution of
every occurrence of v in φ with ψ. We use a generalized notation for quantification and substitution to sets/vectors
of variables. A literal is either an atom or its negation. A clause is a disjunctions of literals. A formula in conjunctive
normal form is a conjunction of clauses.

Boolean formulae are quantifier-free formulae whose atoms are Boolean variables. Quantified Boolean Formulae
(QBF) are formulae where atoms are Boolean variables. QBF are as expressive as Boolean formulae, based on the fact
that ∃P.φ ≡ (φ[P/⊥] ∨ φ[P/>]) and ∀P.φ ≡ (φ[P/⊥] ∧ φ[P/>]).

Binary Decision Diagrams [Bry86] are a canonical representation for Boolean and QBF formulae. They have
been historically used in symbolic model checking to represent sets of states and to implement image computation
by means of advanced quantification routines [McM07, RAB+95]. The problem of satisfiability of Boolean formulae
(SAT) has been heavily investigated, and efficient SAT solvers are available [SLM09]. Satisfiability Modulo Theory
(SMT) [BSST09] is an extension of the SAT decision problem, where the formula is not pure Boolean, but it is ex-
pressed in some background theory, where some symbols are interpreted. Theories of interest include linear arithmetic
over the reals (LRA) and over the integers (LIA), the theory of arrays, and the theory of bit vectors. In the rest of this pa-
per we will focus primarily on the theory of Equality and Uninterpreted Functions (EUF), where function symbols can
be declared, but have no specific property, except for the fact that they are functions, i.e., (x = y)→ (f(x) = f(y)).
We write B for the Boolean type, and D for the type of uninterpreted objects.
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Fig. 1. Fault tree, two TMRs ([a,b] as in Figure 2)

In addition to satisfiability, useful functionalities for SMT are quantifier elimination and AllSMT [LNO06]. Quan-
tifier elimination is the process of finding, for a given formula, an equivalent quantifier-free formula. AllSMT is a
technique to enumerate all solutions to an SMT problem, and it can be also used as a quantifier elimination technique.
The standard approach to AllSMT is a sequence of incremental SMT calls, where the satisfying assignments to the re-
maining variables are enumerated and blocked. We notice that AllSMT constructs a Disjunctive Normal Form (DNF)
representation of the resulting formula.

Fault Tree Analysis (FTA) is a technique for reliability and safety analysis, based on the construction of a Fault
Tree Diagram, or simply Fault Tree (FT) [VSD+02]. A FT is a representation of the possible scenarios that enable
an undesirable configuration, also called Top Level Event (TLE), to be reached. A Fault Tree is characterized by four
kinds of nodes (see example in Figure 1):

• basic faults (circles, name starts with “F”): they are the leaves of the tree and represent the faults of basic compo-
nents, e.g., “the generator is broken” or “the switch is stuck at open”;

• intermediate events (boxes “S1 fails” and “S2 fails”): they represent an hazardous condition reached by a sub-
system;

• top level event (box “TLE”): represents an undesirable configuration, also known as feared event, which is reach-
able by the system;

• logic gates (ANDs and ORs gates) define the relation between the nodes of the tree.

A FT represents a collection of cut sets. A cut set is a set of faults that can cause the Top Level Event. It is possible
to interpret a FT as a Boolean formula, whose satisfying assignments to the basic fault variables correspond to cut sets.
Often FTA works under the monotonicity assumption, i.e. if the Top Level Event can be caused by the cut set c, then
it can also be caused by any superset of c. A cut set is said to be minimal if none of its proper subsets is a cut set.

4. Redundancy architectures

Redundancy is a widely adopted solution when dealing with critical systems. The basic idea is to integrate in the
system multiple copies of the same component, such that a single fault will not cause the failure of the entire system.
There are many forms of redundancy. Some are based on (either cold, warm, or hot) standby, and reconfiguration, and
are directed to increasing availability. In order to increase reliability, i.e. the overall likelihood of correct computation,
we consider “active-active” architectures, where multiple copies of the same component are run in parallel, and the
results are combined by means of voting.

A typical example of redundancy schema is Triple Modular Redundancy (TMR). This design pattern is widely
used for aircraft, nuclear reactor plants, railways, and electric supply systems [Yeh96, BV10, Mon93, lay]. A basic
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Fig. 2. Triple Modular Redundancy (1, 2 and 3 voters per stage)
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Fig. 3. Network of combinatorial components [AS74]

TMR block is composed by three replicated modules, the results of which are combined by a voter component. If all
the components are in agreement, the voter returns one of the values. If only two of the components agree, the value
computed by the “majority” is returned. For example, the voter schema used in [Yeh96] returns the median of the input
values. It is easy to see that a TMR schema is able to tolerate a single fault. Other forms of redundancy, such as Dual
Modular Redundancy, are also applied in practice [BLBM07]. In the following, without loss of generality, we focus
on TMR-based architectures.

In order to compose multiple TMR blocks into more complex architectures, triplicated inputs and outputs are con-
sidered. TMR blocks may have up to three voters, and different connections between them. The various combinations
are shown in Figure 2. For the sake of simplicity, we depict unary computing modules within TMR blocks.

In fact, computing modules of greater arity are also possible. The architecture from [AS74], depicted in Figure 3,
will be used as a reference example in the rest of this paper. We notice that in addition to the unary modules M3 and
M5 we have binary modules (M1,M2 andM4) and a ternary module (M6). On the left-hand side there is a description
of the data flow being computed, and on the right a representation of the redundancy architecture (based on the V123
TMR block of Figure 2).

5. Reliability analysis: the problem

The problem tackled in this paper is reliability analysis, i.e. to evaluate the probability of failure of a redundant archi-
tecture. We are also interested in explaining the overall reliability in terms of the reliability of individual components.
This can be done both in a qualitative way, namely comparing the cut sets / fault tree for different architectures, and
in a quantitative way, namely comparing the probabilities. For the time being, we assume that the failure probabilities



Formal reliability analysis of redundancy architectures 7

of the components and of the architecture, are expressed relative to a given time interval, e.g. the mission time. Our
framework is general, and can accommodate alternative approaches, e.g. reliability as a function of time.

Computing modules and voters are subject to faults, with frequency that is modeled in form of probability values.
In the case of a fly-by-wire architecture as the Primary Flight Computer (PFC) described in [Yeh96], failure may mean
that the actuators do not receive correct control outputs from the pilot. The ability to quantify the failure probability
is required, for example, to demonstrate that a given architecture does obey the safety requirements (e.g., the overall
failure probability is below a certain threshold). Reliability analysis also plays a fundamental role in design space
exploration, when different architectural solutions are compared, based on parameters such as costs, weight, and
design complexity. This supports the choice among different architectures that belong to the Pareto’s frontier, and are
locally optimal and incomparable solutions.

The computation of reliability is based on probability theory. Intuitively, we must accumulate all the possible
configurations of basic faults under which the output of the architecture deviates from the expected one.

Single module

Let us consider first a single module. Assume the probability of failure for a computing element M is FM , and for a
voter V is FV . Then, the probability of failure (producing a wrong output) for the TMR in Figure 2a (V111), assuming
that the faults of the three computing elements and of the voter are independent, is symbolically expressed as

FV + (1− FV ) ∗ ((

(
3

2

)
∗ (FM )2 ∗ (1− FM )) + (FM )3)

which is equivalent to

FV + (1− FV ) ∗ (3 ∗ (FM )2 − 2 ∗ (FM )3).

The formula combines the case where the voter fails, which is sufficient per se to corrupt the output, and the case
where the corruption is the result of at least two computing elements failing.

Once a symbolic reliability function is available, interesting considerations can be drawn. For instance, a TMR
approach is not always able to increase the overall reliability of the system, because this depends on the specific
setting where each component implementation is going to operate. More specifically, the reliability analysis of different
redundant approaches has to take into account the probability of failure of each single module and of the voter.

The 2-dimensional plots in Figure 4 show how a single module (Figure 4a) and a TMR approach (Figure 4b)
deliver different probability of failure, by varying the reliability of modules and voters. The blue area represents a low
probability of failure, while the red one a high probability of failure. Moreover, Figure 4c shows when a TMR ap-
proach delivers higher reliability (the red area) compared to a single module (the blue area), by varying the probability
of failure of computational modules (FM ) and voters (FV ). This analysis shows that a TMR approach is better when
the voter is more reliable than the computational module. This is, in general, a fair assumption because voter imple-
mentations are likely simpler than computational module ones, but there might be some cases where this assumption
does not hold.

Figure 1 shows the generated fault tree, for a chain with a TMR of type V111 (Figure 2a) followed by a TMR
of type V001 (Figure 2b). In this case, the TLE represents the inequality between TMRs and perfect modules. The
intermediate event “S1 fails” specifies that at least 2 outputs of stage 1 diverge from the nominal value, whereas “S2
fails” represents, respectively, the same condition for stage 2.

Linear TMR architectures

A real scenario can be composed of hundreds of different computational modules, and the evaluation of such architec-
tures needs to be performed via automated techniques.

Consider, for example, a chain of TMR modules of the form M1 . M2 . . . . . Mn, as adopted, for instance,
in [Cor64]. The reliability function is non-trivial, given that it needs to consider also different implementations of
voters and modules, thus with a multiplicity of fault probabilities. The work in [HTK10] analyzes the properties of
chains of TMRs of different patterns (e.g., the 1 voter cases shown in Figure 2). Assume now that the problem is to
devise the best displacement of TMRs, given the existence of constraints limiting the number of voters (e.g., 5 voters
overall). The outcome of the analysis is presented in Figure 5, under the hypothesis that the computing modules have
the same fault probability (and also the voters): the X axis represents the probability of failure of the voter, Y axis the
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(a) Single Module (b) Triple Modular Redundancy (TMR)

(c) Single Module (Blue - upper part) vs. TMR (Red - lower part)

Fig. 4. Single Module and Triple Modular Redundancy comparison

probability of failure of each module. For each point, the color represents the architectural pattern that guarantees the
highest system reliability for a pair of X,Y values.

The technique proposed in [HTK10] is subject to several limitations: the user is requested to define the function
that describes the reliability of each possible TMR; such results are composed by means of an automated technique
that instantiates the functions on a set of possible numerical values of failure probability. Furthermore, the framework
requires uniformity: a chain of the same TMR pattern, with the same fault probability.

Tree- and DAG-like architectures

Finally, there are architectures as the one in Figure 3, from [AS74], which contains computing modules of multiple
arity, and multiple fan out.

6. Formal reliability analysis of redundancy architectures

We now present a formal, automated approach for the production of the reliability function for a given architecture.
The approach is based on the following phases (detailed in the rest of the Section):
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(a) Best architectures

Color Array of configuration

(a) blue (bottom-right) [b,b,b,b,b,b,b,b]

(b) blueberry [b,b,c,b,b,b,c,b]

(c) lightblue [b,c,d,b,c,d,b,c]

(d) green [d,c,b,a,d,c,b,a]

(e) yellow [d,a,d,a,d,a,d,a]

(f) red [a,a,d,a,a,a,d,a]

(g) brown (top-left) [a,a,a,a,a,a,a,a]

(b) Mapping colors to architecture

Fig. 5. Reliability comparison: TMR chains with 1 voter

Architecture modeling The architecture is modeled using uninterpreted function to express computing modules, and
Boolean logic to express the connections between them. Uninterpreted functions allow us to express the functional
properties of the behavior of individual components. At the same time, since the functions are uninterpreted, we can
concentrate on the features of the redundant architecture, abstracting from the specific module implementations.

Miter composition First, we model a selective switch that allows us to enable or disable the possibility to have faulty
behaviors on the entire architecture. Then, we compare two architecture instances where one can fail and the other
cannot fail. The first one represents the architecture under analysis and the latter the reference one, while the miter
composition is designed to provide them the same input and evaluating under which conditions they provide a
different result.

Cut sets computation We construct the set of all fault configurations that are sufficient for the architecture under
analysis to provide a wrong result. These configurations can be arranged into a fault tree representation. The
analysis is performed by relying on the minimal cut sets computation on the miter composition.

Reliability Function extraction This phase constructs the BDD-based representation of the set of cut sets [Rau93,
Rau01], and traverses it to generate the reliability function in closed form.

6.1. Architecture modeling

Figure 6 shows a graphical representation of a TMR with single voter. Basic computing elements are modeled as
combinatorial, i.e. stateless components. Each module has two separate behaviors: nominal (MN ), and faulty (MF ).
Those behaviors are described by relying on uninterpreted functions. The coherence between each nominal behavior
is guaranteed by the fact that all modules, except voters, are sharing the same uninterpreted function (green arrows in
Figure 6, labelled as “nominal behavior”). The behavior under fault is assumed not to be constrained, and it is also
represented as an uninterpreted function. Since the modules are not required to fail in the same way, each function can
be local to each module. The voter VN has a well defined implementation, and it does not need to be modeled with
an uninterpreted function because it is interpreted and well defined. The outputs of each pair MN /MF and VN /VF are
given to a multiplexer, which selects the right signal according with the fault event (represented with the red arrows).
The input to each multiplexer can be masked with a can fail signal in order to enable/disable the faulty behavior.

The formal model that describes the setting shown in Figure 6 is defined using the SMV language extended with the
support for uninterpreted functions. Figure 7 presents the definition of the extended module. More in detail, the module
receives three parameters: input, representing the input value of the computation (of type real); the Boolean pa-
rameter can fail, which enables the component to have internal failures; and the function nominal behavior,
modeling the computation in the nominal case. The modeling approach relies on real data types in order to describe
infinite domain values, referred later in this paper also as D type. Within the definition of the extended component
we have: the variable failure that keeps track of the current behavior (nominal or faulty), the definition of the
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Fig. 6. TMR component with EUF

1 MODULE MODULE_1_INPUT(input, can_fail, nominal_behavior)

VAR
local_failure : boolean;

5
FUN
faulty_behavior : real -> real;

DEFINE
10 failure := local_failure & can_fail;

DEFINE
output :=
case

15 !failure : nominal_behavior(input);
TRUE : faulty_behavior(input);

esac;

Fig. 7. An example of extended module (SMV language)

faulty behavior, and the multiplexer (line 13 in Figure 7) that implements the switching between nominal and
faulty behavior.

Figure 8 presents the definition of the extended voter. This component receives four parameters: the tree input val-
ues input 1, input 2 and input 3, of type real, and the Boolean parameter can fail, which enables the com-
ponent to have internal failures. The definition of the extended voter is composed of: the variable local failure
that keeps track of the current behavior (nominal or faulty), the definition of the expected behavior of the voter (line
10), the definition of the faulty behavior, and the multiplexer (line 21 in Figure 7) that implements the switching
between nominal and faulty behavior. The masking with the can fail signal is represented in line 18.

The EUF-based modeling approach allows for the description of complex computational networks, where each
component can be extended with a redundancy pattern. More specifically, this modeling approach allows for extending
any computational network, represented as a Directed Acyclic Graph (DAG), with any of the redundancy patterns
examples listed in Figure 2.

6.2. Miter composition

The idea at the basis of the analysis of redundant architectures is to evaluate which component failures may affect the
possibility to provide the correct value. In order to do this, we need to compare the faulty system, modeled as described
in the previous section, with a reference architecture that always operates as expected e.g., with no faulty behavior.

An architecture composed of a set of modules with nominal behavior and can fail as parameters (as
described in Figure 6) gives us the possibility to describe both reference and faulty systems. In fact, the reference
architecture is instantiated by providing FALSE as can fail parameter to all components, while it will be TRUE
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1 MODULE VOTER_1_INPUT(input_1, input_2, input_3, can_fail)

VAR
local_failure : boolean;

5
FUN
faulty_behavior : real * real * real -> real;

DEFINE
10 voted_output := case

input_1 = input_2 : input_1;
input_1 = input_3 : input_1;
input_2 = input_3 : input_2;
TRUE : input_3;

15 esac;

DEFINE
failure := local_failure & can_fail;

20 DEFINE
output :=
case
!failure : voted_output;
TRUE : faulty_behavior(input_1, input_2, input_3);

25 esac;

Fig. 8. An example of extended voter module (SMV language)
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Fig. 9. Miter composition.

in case of a faulty description. Moreover, all nominal behaviors will be shared between the two instances, in
order to guarantee a coherence when no failures have occurred. This system composition, as shown in Figure 9, is
called miter [Bra93]. An important aspect when comparing two architectures is to provide them the same inputs, and
evaluate the difference in the outputs. A common analysis performed on the miter construction is to evaluate whether
the reference and faulty outputs are equal. Another possible analysis could be to consider an output to be wrong only
when it differs with respect to the expected one by a predefined threshold.

The miter construction comes with a distinguished signal TLE. If the model has a single output, then TLE is the
deviation between the two copies, i.e. o 6= o′. If there are multiple outputs then the TLE is the disjunction of all the



12 M. Bozzano, A. Cimatti, and C. Mattarei

output deviations, i.e.

TLE =̇
∨
o∈~O

(o 6= o′)

6.3. Minimal Cut Sets computation

The miter composition, as shown in Figure 9, is evaluated in order to generate the set of conditions that may cause the
two systems to provide different outputs in presence of the same inputs. More specifically, we are interested in the set
of assignments to the fault variables, referred to as fault configurations, which are sufficient to provide a wrong result.

We require the reference architecture to be deterministic when the fault variables are set to false. Notice that
without this hypothesis, two perfectly legal behaviors could trigger the Top Level Event, thus resulting in an empty
(and meaningless) fault configuration.

Consider the TMR example in Figure 6. We call the three extended modules EM1, EM2 and EM3. Then, the set
of fault configurations, also called cut sets, which are sufficient to produce a wrong output are:

1. {EV }: every output of each module EMi is evaluated by the voter EV , and this implies that a failure of such
module is sufficient to cause a wrong behavior of the entire system.

2. {EM1, EM2}: the output of the voter EV is in accordance with the majority of the received inputs, and a wrong
result produced by more than two modules is then propagated to the voter’s output.

3. {EM1, EM3}: similar condition as {EM1, EM2}, but with EM1 and EM3.
4. {EM2, EM3}: similar condition as {EM1, EM2}, but with EM2 and EM3.

Every cut set can be represented, via a propositional formula, as a conjunction of component’s faults, and the
whole set of configurations as a disjunction of cut sets. According to these conditions, the resulting formula for the
example in Figure 6 is

FEV ∨ (FEM1
∧ FEM2

) ∨ (FEM1
∧ FEM3

) ∨ (FEM2
∧ FEM3

) (1)

In a general case, defining the miter composition as an SMT formula π over input ports ~I , output ports ~O, fault
variables ~F , and Top Level Event, the formula representing the set of cut sets is obtained as

∃~I, ~O.
(
π(~I, ~O, ~F ) ∧ TLE( ~O)

)
(2)

Intuitively, this formula represents the set of assignments to ~F such that there exists an assignment to ~I that allows
the two architectures to provide different output values.

The problem of extracting the cut sets is naturally encoded as an AllSMT for the theory of EUF [LNO06]. The
AllSMT problem is a specific form of quantifier elimination: all the theory variables are eliminated, and only Boolean
variables remain. In this case, the variables being quantified out are the input and output ports ~I and ~O, while the
remaining variables are the ~F variables. Intuitively, the AllSMT proceeds by finding a satisfying assignment, extracting
the assignment to the remaining variables, transforming it into a blocking clause, and iterating until a fix point is
reached.

We notice that the problem enjoys a monotonicity property: if an assignment µ to the fault variables can cause the
TLE, so can all the assignments µ′ where one or more ⊥ values are replaced with >, i.e. one or more components are
turned from not faulty to faulty. Intuitively, if a set of faults can cause the Top Level Event, so can all its super-sets.
This follows from the fact that in case of fault the behavior of the components is completely unconstrained: thus, in
case of µ′, it is still possible for a faulty component to exhibit the same behavior that was associated by µ.

This property can be exploited in the AllSMT computation. This is done in two ways. First, the splitting heuristics
are modified so that the fault variables are given negative polarities, hence models with “less faults” are privileged.
Second, during the AllSMT iteration, the model is generalized by removing all the negated fault literals before block-
ing.
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Fig. 10. BDD of the formula FV ∨ (FM1 ∧ FM2) ∨ (FM1 ∧ FM3) ∨ (FM2 ∧ FM3)

6.4. Reliability function extraction

The formula representing the cut sets can be converted into a BDD-based representation. From this, we can automat-
ically generate the reliability function, in a closed form fashion, of the entire system. We remark that the generation
of the cut sets is a necessary step in the context of this work, since the models under analysis contain real-valued
variables, hence BDD-based techniques cannot be directly applied on the models themselves.

The advantage of this approach consists in providing a result that is independent from the specific fault probability
of the individual components. More specifically, the closed form of the reliability function represents the characteristic
of the redundant pattern and is independent of the possible values of the failure probability. Moreover, the generation
of the reliability function can be performed once and for all, and then computed on-demand on every instance of the
problem.

Given the propositional formula representing failure configurations of a redundant system, and assuming inde-
pendence between events, it is possible to extract the closed form of the reliability function by analyzing its BDD
representation. If the Boolean BDD variables are intended to represent the occurrence of independent events, and ev-
ery fault variable q is associated with a probability of occurrence Fq , then it is possible to associate a probability to the
overall truth of the formula represented by the BDD. This is done recursively as follows, where n is a BDD node and
n1, n2 its sub-nodes:

BDDPROB(n) =


1 if n = >
0 if n = ⊥
Fq ∗ BDDPROB(n1) +

(1− Fq) ∗ BDDPROB(n2) if n = ITE(q, n1, n2)

(3)

Equation 3 provides an intuitive characterization of the algorithm that extracts the reliability function from the
BDD representation. This method essentially performs a depth-first-search visit over the BDD structure, considering
all paths that lead to the > node. In the base cases, the > node results in a probability of 1 (regardless of possible
variables assignments), and a ⊥ node yields a probability of 0, as the corresponding assignment does not cause the
TLE. The step case in Equation 3 expresses the ITE concept from the theory of probability, assuming that events are
independent, with the positive occurrence of the variable q represented by Fq and, respectively, its negative occurrence
with (1− Fq).

Figure 10 shows the BDD representation of the cut sets produced by the example in Figure 6. The application of
the approach described by Equation 3 to this example is presented by Equation 4, where each row represents a path of
the Depth First Search on the BDD.

Fv+

(1− FV ) ∗ FM1 ∗ FM2+

(1− FV ) ∗ FM1 ∗ (1− FM2 ) ∗ FM3+

(1− FV ) ∗ (1− FM1
) ∗ FM2

∗ FM3

(4)

The technique described above can also be used to carry out symbolic evaluation, i.e., compute the reliability
function in analytical form. In particular, each parameter of this function is a symbolic variable representing the
failure probability of a single component.

This technique allows the designer to cope with complex architectural patterns without loss of precision, especially
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considering that the manual analysis of such structures can rapidly become impractical. As an example, Equation 5
represents the reliability function computed for the architecture with module V111 (Figure 2a), followed by V100
(Figure 2d)1.

Fsys(FM , FV ) =FV + (2 ∗ FM ∗ FV ) + (6 ∗ F2
M )− (16 ∗ F4

M ∗ F2
V )− (4 ∗ F3

M )+

− (10 ∗ FV ∗ F2
M )− (4 ∗ F6

M ∗ F2
V )− (2 ∗ FM ∗ F2

V )− (4 ∗ F6
M ) + . . .

+ (25 ∗ FV ∗ F4
M ) + (12 ∗ F5

M )− (26 ∗ FV ∗ F5
M ) + (4 ∗ F2

M ∗ F2
V ) (5)

This formula has been obtained automatically by using symbolic computation techniques based on Equation 3.
Computing the symbolic reliability function allows us to compare different architectural configurations independently
of the specific values of failure probability. Moreover, the generation of the parametric reliability function allows us to
evaluate different modules that implement the same behavior. As an example, let us consider three different modules,
M1, M2 and M3, which provide the same capability in terms of functional computation but using different imple-
mentations. In this scenario, the symbolic computation allows us to express dependencies between failure probability
of different modules. For instance, a setting where the probability of failure of M1 is FM1 , FM2 = 7/8 ∗ FM2, and
FM3 = 5/8 ∗ FM1, can be easily expressed in order to evaluate the overall reliability. Equation 6 shows an example of
the generated reliability formula, where the failure probability of M1 is k times the failure of other modules (denoted
FM ).

FsysK(FM , FV , k) =FV + (2 ∗ FM ∗ FV ) + (2 ∗ F2
M )− (4 ∗ FV ∗ F2

M ) + (4 ∗ k ∗ F5
M )+

− (4 ∗ F4
M ∗ k

2)− (4 ∗ F6
M ∗ k

2)− (2 ∗ FM ∗ F2
V )− (2 ∗ F4

M ∗ F2
V ) + . . .

+ (3 ∗ FV ∗ F4
M ) + (14 ∗ FV ∗ k ∗ F4

M )− (10 ∗ FV ∗ k ∗ F5
M ) (6)

Most importantly, the reliability function as in Equation 5 takes as input a symbol that should express the failure
probability of a specific component (type), i.e., a value in R[0,1]. In principle, assuming the independence between
basic events, the reliability function can be extended in order to consider other parameters such as the time interval,
giving the probability of failure of the basic events as probability distributions e.g., Weibull or exponential. This
approach is described in Equation 7 where FsysT : ((R 7→ R[0,1]) × (R 7→ R[0,1]) × R) 7→ R, and both FM and FV

are functions that respectively compute the probability of failure of M and V, given an interval of time ∆T .

FsysT (FM , FV ,∆T ) =̇ Fsys(FM (∆T ), FV (∆T )) (7)

6.4.1. Symbolic and numerical functions

While the concept behind the reliability function computation is described in the Equation 3, its actual implementation
exploits the DAG-like structure of BDDs to minimize the generated formula. Algorithm 1 shows this process, which
requires as input a BDD, a map from BDD-nodes to symbols representing the variables that identify the probability of
failure, and an hashtable used to cache the already computed results. The output of this algorithm is the actual closed
form of the reliability function. Internally, Algorithm 1 relies on the generation of a “shared formula” (i.e., line 10),
which guarantees to share the common sub parts.

The next step, after the application of the Algorithm 1, is to print out the structure of the shared formula. Figure 11
shows an extract of such output for the architecture composed of the TMR V111 (Figure 2a), followed by the V100
(Figure 2d). In this case, the function “fault probability” takes as input the probability of failure of each voter (e.g.,
TV111V1f for Voter 1 in TMR V111), and each module (e.g., TV100M2f for Module 2 in TMR V111) and provides
as output the probability of failure prob of the entire architecture.

1 For brevity, in Equations 5 and 6 we omit some summands, and replace them with . . . instead. Moreover, we assume the three modules have the
same failure probability, denoted FM .
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Algorithm 1: Symbolic probability computation.
Input: BDD (n), Symbols map (S), Hashtable (cache = {})
Result: Probability

1 if n in cache then
2 return cache[n];

3 if n => then
4 return 1.0;

5 if n =⊥ then
6 return 0.0;

7 pthen← Probability computation(get then node(n),S, cache);
8 pelse← Probability computation(get else node(n),S, cache);
9 pcur← S(get var(n));

10 cache[n]← shared formula(pcur · pthen + (1.0− pcur) · pelse);
11 return cache[n];

1 function prob = fault_probability(TV111V1f, TV111M1f, TV111M2f, TV111M3f, TV100V1f,
TV100M1f, TV100M2f, TV100M3f)

EXPR1 = TV111V1f;
EXPR2 = 1;
EXPR3 = EXPR2 - EXPR1;

5 EXPR4 = TV100V1f;
EXPR5 = TV100M3f;
EXPR6 = EXPR2 - EXPR5;
EXPR7 = TV100M2f;
EXPR8 = EXPR2 - EXPR7;

10 EXPR9 = TV111M3f;
EXPR10 = TV111M2f;...
prob = EXPR_40;

Fig. 11. Reliability function of the architecture V111 (Figure 2a), followed by V100 (Figure 2d)

7. Computing Cut Sets via predicate abstraction

The main computational bottleneck of the flow described in previous Section is the construction of the set of Minimal
Cut Sets. The problem can be seen as an AllSMT(EUF) problem, i.e. the enumeration of all minimal solutions of
a formula using AllSMT [LNO06]. Since the performance of available solvers is directly related to the number of
minimal cut sets, in realistic cases this computation can be very expensive. In this Section, we present a method
to overcome this bottleneck. We first informally present the approach. Then, we define a formal representation for
architectures (Sec. 7.2), prove a general equivalence theorem between concrete and abstract architectures (Sec. 7.3),
and then specialize it to the case of abstract miter (Sec. 7.4).

7.1. Overview of the approach

MR

MF

F

T

NB

Fig. 12: Stage composition

We use predicate abstraction to reformulate the problem into an equivalent rep-
resentation, where the scope of theory variables is localized. This allows us to
“push-in” the quantifiers, and partition a global AllSMT(EUF) computation into
a number of smaller AllSMT(EUF) problems (in the computation of the abstract
modules). The outcome of this process is a Boolean formula that can be quantified
with an efficient, BDD-based procedure.

Our approach is generic, in that it works for a generic set of predicates, not
only when the predicates represent component faults. Moreover, since we generate
a Boolean formula which is equivalent to the original one, the compositional ap-
proach does not impact the overall flow of the analysis, in particular the generation
of the reliability function is identical as in the monolithic case, and the Minimal
Cut Sets computation is based on the techniques described in [BCGM15]. Also,
our approach does not require a specific algorithm to compute the unreliability
and/or the fault tree – alternative methods can be used to solve the obtained Boolean formula, e.g. it could be possible
to skip the generation of the fault tree and directly compute the unreliability function.
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Fig. 13. Stage-based Miter

Stage-based miter

Consider the miter construction presented in Figure 9. It relies on the “black box” comparison of two identical copies
of the architecture: the one under analysis, which can fail, and the reference architecture that is constrained not to
fail. We notice that every (fallible) module in the architecture under analysis has a corresponding infallible module in
the reference architecture. Thus, we consider a miter construction based on a tighter aggregation of the corresponding
(faulty and reference) copies of the same module. This aggregation, called a stage, is depicted in Figure 12. This
construction is generalized at the system level to obtain a stage-based miter. Figure 13 depicts the stage-based miter for
the system in Figure 3. Although the two miter constructions are logically equivalent, the stage-based miter combines
reference and faulty components in the same block. This characteristic allows us to emphasize the localization of the
deviation of a component from its nominal behavior.

Optimized Cut Set computation

The second step is to apply a predicate abstraction on the input and output ports of each stage. Intuitively, the predicates
characterize the ways in which the outputs of the component can deviate from the nominal case, given the internal
faults and the deviations in the inputs deriving from upstream faults. The abstraction is explicitly represented by means
of additional components connected to the input and output ports of each stage, as represented in Figure 14. The Ci

components, called concretizers, receive as input an assignment to the predicates, and provide as output an instance of
concrete signals satisfying them. Analogously, the Ai components, called abstractors, give as output the assignment
to the predicates corresponding to the concrete data in input. We obtain an architecture that has the same interface
as the concrete one by adding an abstractor that preprocesses the inputs. This model, depicted in Figure 14, is called
abstract miter. The fundamental property of the abstract miter is that, under some preconditions, it has the very same
cut sets as the concrete one. We obtain a pure Boolean model by replacing each abstract stage (as in Figure 14) with a
Boolean component over the input and output predicate variables, computed by means of a local AllSMT(EUF) call.

7.2. Formal description of architectures

7.2.1. Architectures as combinatorial components

We now introduce a formal notation to describe architectures. The formalism allows us to model combinatorial com-
ponents, i.e. that do not have persistent state. A Basic Combinatorial Component models a system with input and
output ports, a set of faults signals, and an SMT(EUF) formula.
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Fig. 14. The abstract Miter

Definition 7.1 (Basic combinatorial component). A basic combinatorial component is a tuple 〈~I, ~O, ~F , π〉, where:

• ~I is the vector of input ports

• ~O is the vector of output ports

• ~F is the set of faults events
• π(~I, ~O, ~F ) is an SMT formula.

We denote with ~I[i] the i-th input port, and with ~O[i] the i-th output port. Each port p is associated with a type τ(p),
which can either be Boolean (B) or Data (D). We denote with τ(~I) the vector of types for the input ports; similarly for
τ( ~O). We require τ(f) = B for all fault event f ∈ ~F .

More complex combinatorial components are recursively obtained from basic components by means of two com-
position operators: sequential composition (.), and parallel composition (|).

Sequential composition links the outputs of the first component to the inputs of the second one. It requires that the
components are sequentially compatible, i.e. the connected port vectors have the same type, as expressed in Defini-
tion 7.2.

Definition 7.2 (Sequential compatibility). Let M1 = 〈~I1, ~O1, ~F1, π1〉 and M2 = 〈~I2, ~O2, ~F2, π2〉 be two combina-
torial components. M1 and M2 are sequentially compatible, denoted M1 ;M2, iff τ( ~O1) = τ(~I2).

Definition 7.3 formalizes the sequential composition of two components M1 and M2. The idea is to connect the
output ports of M1 to the input ports of M2. The resulting component M has the same input ports as M1, the same
output ports of M2 and the union of the faults of M1 and M2.

Definition 7.3 (Sequential composition). Let M1 = 〈~I1, ~O1, ~F1, π1〉 and M2 = 〈~I2, ~O2, ~F2, π2〉 be two combina-
torial components. If M1 ; M2, their sequential composition M =̇ M1 . M2 is defined as 〈~I1, ~O2, ~F1 ∪ ~F2, π〉
where

π =̇ ∃ ~O1, ~I2 : π1(~I1, ~O1, ~F1) ∧ π2(~I2, ~O2, ~F2) ∧ ~O1 = ~I2

Parallel composition, on the other hand, juxtaposes the set of ports of the two components, which run in parallel.
We require the set of faults of the components to be disjoint.

Definition 7.4 (Parallel composition). Let M1 = 〈~I1, ~O1, ~F1, π1〉 and M2 = 〈~I2, ~O2, ~F2, π2〉 be two combinatorial
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components such that ~F1 ∩ ~F2 = ∅. Their parallel composition M1|M2 is defined as

〈 ~I1 · ~I2, ~O1 · ~O2, ~F1 ∪ ~F2, π1(~I1, ~O1, ~F1) ∧ π2(~I2, ~O2, ~F2) 〉
where · represents vector juxtaposition.

This framework enables the definition of any tree- or DAG-shaped structure. In the following, we assume that the
components are expressed in form of sequential composition of layers, where each layer is the parallel composition of
basic components. This is without loss of generality: specialized basic components can be used to connect inputs and
outputs ports in a different fashion than just parallel and sequential to adjacent components. To this end, we identified
three classes of components: duplication of values (D), propagation of input values (I , for identity), and arbitrary
reconfiguration of signals (R module).

Equation 8 represents the system in Figure 3 as a combinatorial component. In this case, we use a D component
in order to duplicate outputs of the M1 and M2 components.

(M1|M2) . (D|D) . (M3|M4|M5) . M6 (8)

Example 7.1 provides a possible representation of the R module.

Example 7.1 (Reconfiguration as a basic component). A reconfiguration module R is a basic component with two
Real inputs i1, i2 and two Real outputs o1, o2, where i1 is linked to o2 and i2 to o1. Formally, R =̇ 〈~I, ~O, ~F , π〉 where:

• ~I = [i1, i2];
• ~O = [o1, o2];
• ~F = ∅;
• π(~I, ~O, ~F ) = (i1 = o2) ∧ (i2 = o1).

�
Example 7.2 (TMR V111 as a combinatorial component). Giving a computational module with one input and one
output, whose nominal and faulty behaviors are respectively defined by the uninterpreted functions NBM : D → D,
and FBM : D → D, and a faulty voter behavior FBV : D × D × D → D, then the corresponding Triple Modular
Redundancy with one voter (V111 as in Figure 6) is represented as a combinatorial component 〈~I, ~O, ~F , π〉 such that:

• ~I = [i1, i2, i3];
• ~O = [o1, o2, o3];
• ~F = {fM1, fM2, fM3, fV };
• π(~I, ~O, ~F ) = ∃NBM , FBM , FBV : (

∧
i=1..3 oi = TMR(~I, ~F ,NBM , FBM , FBV )).

and where the formula TMR is defined as:
TMR(~I, ~F ,NBM , FBM , FBM , FBV ) =̇ VOTER(M(i1, NBM , FBM , fM1),

M(i2, NBM , FBM , fM2),

M(i3, NBM , FBM , fM3), FBV , fV )

M(i, NBM , fM ) =̇ IF ¬fM THEN NBM (i) ELSE FBM (i)

VOTER(i1, i2, i3, FBV , fV ) =̇ IF ¬fV THEN NBV (i1, i2, i3) ELSE FBV (i1, i2, i3)

NBV (i1, i2, i3) =̇ IF i1 = i2 THEN i1 ELSE e1

e1 =̇ IF i1 = i3 THEN i1 ELSE e2

e2 =̇ IF i2 = i3 THEN i2 ELSE i3

Intuitively, each fault variable fMi, when set to false, binds the output of each module to the output of the function
NBM , while they leave them free when assigned to true. The voters are described in a similar way, but in this case the
behavior is explicitly defined as NBV . �

The structures defined via the combinatorial components can be proven to be equivalent if they satisfy the Def-
inition 7.5. According to that, we can now define a set of important properties that characterize these structures. In
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particular, Lemma 7.1 states that if two combinatorial components are equivalent, it is possible to sequentially combine
them with a third component and preserve the equivalence. Lemma 7.2 states a similar result for parallel composition.
Lemma 7.3 shows that the application of sequential and parallel composition can be inverted when the sequential
compatibility allows for the former composition to be applied. Another important property is the associativity (i.e.,
Lemma 7.4), which applies only for the parallel composition, while commutativity does not apply for either of the
operators.

Definition 7.5 (Equivalence). Two combinatorial components M1 = 〈~I1, ~O1, ~F1, π1〉 and M2 = 〈~I2, ~O2, ~F2, π2〉,
such that ~F1 = ~F2, ~I1 = ~I2, and ~O1 = ~O2, are called equivalent, denoted M1 ≡ M2, if and only if π1 and π2 are
logically equivalent.

Lemma 7.1 (Sequential equivalence). Given the combinatorial components M , M1, and M2, if M1 ≡ M2, M ;

M1 ;M , and M ;M2 ;M , then M .M1 ≡M .M2 and M1 . M ≡M2 . M .

Lemma 7.2 (Parallel equivalence). Given the combinatorial components M1, M2, M3, M4, if M1 ≡M2 and M3 ≡
M4 then M1|M3 ≡M2|M4.

Lemma 7.3 (Inversion equivalence). Given the combinatorial components M1, M2, M3, M4, if M1 ; M2 and
M3 ;M4 then (M1|M3) . (M2|M4) ≡ (M1 . M2)|(M3 . M4).

Lemma 7.4 (Associativity). Given the combinatorial components M1, M2, and M3, if M1 ; M2 and M2 ; M3

then (M1 . M2) . M3 ≡M1 . (M2 . M3) and (M1|M2)|M3 ≡M1|(M2|M3).

7.3. Equivalence modulo abstraction

We now define two special types of combinatorial components, whose purpose is to support the modeling of abstrac-
tion. Abstractor components (Definition 7.6) are used to translate a set of concrete (data) values into their abstract
counterpart, whereas Concretizer components (Definition 7.7) generate instances of concrete values satisfying the
predicates.

Definition 7.6 (Abstractor). A combinatorial component A = 〈~I, ~O, ~F , α〉 is an abstractor iff τ(o) = B for all
o ∈ ~O, and ~F = ∅.

Definition 7.7 (Concretizer). A combinatorial componentC = 〈~I, ~O, ~F , γ〉 is a concretizer iff τ(i) = B for all i ∈ ~I ,
and ~F = ∅.

By way of abstractors and concretizers, we can express the abstraction of a component M as the sequential com-
position C .M . A.

Example 7.3 (Module abstraction via abstractors and concretizers). Given a combinatorial component M , with
two input ports ~IM = [M.i,M.i′], two output ports ~OM = [M.o,M.o′], one fault ~F = [M.f ], and a behavior
π =̇ (M.i = M.o)∧ (¬M.f → (M.i′ = M.o′)). The ports whose name is primed (e.g., M.i′) are called faulty, while
the not primed ports are the reference ones. According to that, the behavior π defines a connection between reference
ports (i.e., M.i and M.o), while the faulty ones (i.e., M.i′ and M.o′) are forced to be equal only when M.f is false.

Assuming that we abstract the behavior π with the predicates Pi and Po, such that Pi ⇐⇒ (M.i = M.i′) and
Po ⇐⇒ (M.o = M.o′), then the resulting abstracted behavior πA is defined as:

πA =̇ ∃M.i,M.o,M.i′,M.o′ : π∧(Pi ⇐⇒ (M.i = M.i′))∧
(Po ⇐⇒ (M.o = M.o′))

which simplifies to:

πA =̇ Pi→ (¬M.f → Po)

The application of the technique described in this paper requires the definition of concretizer and abstractor com-
ponents. In this particular case, they are respectively C = 〈~IC , ~OC , ∅, γ〉 and A = 〈~IA, ~OA, ∅, α〉, where ~IC = [Pi],
~OC = [C.o, C.o′], ~IA = [A.i, A.i′], and ~OA = [Po]. The definition of γ and α behaviors follow the predicates express-
ing the equality between reference and faulty ports, thus γ =̇ Pi ⇐⇒ (C.o = C.o′) and α =̇ Po ⇐⇒ (A.i = A.i′).

Since the condition C ; M ; A holds, the abstraction of component M can be defined as C . M . A. The
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behavior πCMA of the combinatorial component C .M .A = 〈~IC , ~OA, ~F , π
CMA〉, resulting from the application of

the sequential composition, is defined as follows:

πCMA =̇ (∃ ~OC , ~IM , ~OM , ~IA : γ ∧ π ∧ α∧
(C.o = M.i) ∧ (C.o′ = M.i′) ∧ (M.o = A.i) ∧ (M.o′ = A.i′))

≡ (∃ ~OC , ~IM , ~OM , ~IA :

(Pi ⇐⇒ (C.o = C.o′)) ∧ π ∧ (Po ⇐⇒ (A.i = A.i′))∧
(C.o = M.i) ∧ (C.o′ = M.i′) ∧ (M.o = A.i) ∧ (M.o′ = A.i′))

≡ (∃~IM , ~OM :

(Pi ⇐⇒ (M.i = M.i′)) ∧ π ∧ (Po ⇐⇒ (M.o = M.o′)))

≡ (Pi→ (¬M.f → Po))

The result expresses that πCMA is equivalent to πA.
�

We now prove that, under suitable conditions, a system composed of concrete modules is equivalent to a system
where each individual module is replaced with its abstract counterpart.

Theorem 7.1 (Modular abstraction equivalence). For all i ∈ {1..n}, for all j ∈ {1..mi} let Mi,j be combinatorial
components and let Ci,j be concretizers. For all i ∈ {1..(n+ 1)}, for all j ∈ {1..mi} let Ai,j be abstractors. Let
Ci,j ;Mi,j and Mi,j ; Ai,j . Let

CONCRETESYS =̇ Ln . . . . . L2 . L1 . A1

ABSTRACTSYS =̇ An+1 . CLAn . . . . . CLA2 . CLA1

where

Li =


Mi,1

Mi,2
· · ·

Mi,mi

 , Ci =


Ci,1

Ci,2
· · ·
Ci,mi

 , Ai =


Ai,1

Ai,2
· · ·
Ai,mi

 , CLAi = Ci . Li . Ai

If for all i ∈ {1..n}, for all j ∈ {1..mi} it holds that

Ai+1,j . Ci,j . Mi,j . Ai,j ≡ Mi,j . Ai,j (9)

then

CONCRETESYS ≡ ABSTRACTSYS

Theorem 7.1 allows us to generate an equivalent network of combinatorial components by using only Boolean
modules. Namely, it enables substitution of a concrete module with its abstract counterpart, provided that the ap-
plication of abstraction and concretization on inputs preserves the behavior of the outputs in the abstract domain,
as formally defined by the hypothesis. CONCRETESYS and ABSTRACTSYS systems in Theorem 7.1 are sequential
compositions of layers, and each layer is a parallel composition of combinatorial components.

Proof. The proof proceeds by induction on the number of layers (sequential composition), and on the number of
elements within a layer (parallel composition).
Parallel composition

First, we need to prove that if Equation 9 holds then that property can be lifted to layers. For all i ∈ {1, . . . , n}

Li . Ai ≡ Ai+1 . Ci . Li . Ai (10)
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Parallel composition: base case

When mi = 1, we have M1 . A1 ≡ A2 . C1 . M1 . A1, which follows from the hypothesis of the theorem.

Parallel composition: step case

Assuming that Equation 10 holds for n, then ifMi,n+1.Ai,n+1 ≡ Ai+1,n+1.Ci,n+1.Mi,n+1.Ai,n+1 by Lemma 7.2
we obtain


Mi,1

Mi,2
· · ·
Mi,n

 .


Ai,1

Ai,2
· · ·
Ai,n


Mi,n+1 . Ai,n+1

≡


Ai+1,1

Ai+1,2
· · ·

Ai+1,n

 .


Ci,1

Ci,2
· · ·
Ci,n

 .


Mi,1

Mi,2
· · ·
Mi,n

 .


Ai,1

Ai,2
· · ·
Ai,n


Ai+1,n+1 . Ci,n+1 . Mi,n+1 . Ai,n+1

(11)

then, considering that the hypothesis of the Theorem guarantees a sequential compatibility of the sequential com-
positions, by Lemma 7.3 and Lemma 7.4 it is possible to switch the top sequential and parallel composition on both
sides of the equivalence, and conclude that Equation 12 holds.


Mi,1

· · ·
Mi,n

Mi,n+1

 .


Ai,1

· · ·
Ai,n

Ai,n+1

 ≡


Ai+1,1

· · ·
Ai+1,n

Ai+1,n+1

 .


Ci,1

· · ·
Ci,n

Ci,n+1

 .


Mi,1

· · ·
Mi,n

Mi,n+1

 .


Ai,1

· · ·
Ai,n

Ai,n+1

 (12)

Sequential composition
We now prove, for all n, that

Ln . Ln−1 . . . . . L1 . A1 ≡
An+1 . (Cn . Ln . An) . (Cn−1 . Ln−1 . An−1) . . . . . (C1 . L1 . A1)

(13)

Sequential composition: base case

When n = 1, L1 . A1 ≡ A2 . C1 . L1 . A1 follows directly from Equation 10.

Sequential composition: step case

Assume that the property of Equation 13 holds for n. By Lemma 7.1 it is possible to prepend Ln+1:

Ln+1 . Ln . . . . . L1 . A1 ≡
Ln+1 . An+1 . Cn . Ln . An . Cn−1 . . . . . L1 . A1

(14)

Then, if Ln+1 . An+1 ≡ An+2 . Cn+1 . Ln+1 . An+1 by Lemma 7.1 we obtain

Ln+1 . An+1 . Cn . Ln . An . Cn−1 . . . . . L1 . A1 ≡
An+2 . Cn+1 . Ln+1 . An+1 . Cn . Ln . An . Cn−1 . . . . . L1 . A1

(15)

and using Equation 14 we obtain

Ln+1 . Ln . . . . . L1 . A1 ≡
An+2 . Cn+1 . Ln+1 . An+1 . Cn . Ln . An . . . . . C1 . L1 . A1

(16)

which proves that the property of Equation 13 holds also for n+ 1.
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7.4. Specialization to miter equivalence

We now discuss how to apply Theorem 7.1 to the problem of computing the set of cut sets for TLE in the concrete
miter, and reduce it to the problem of computing the cut sets of an equivalent, abstract Boolean system.

7.4.1. Model definition

In the context of the architecture analysis, each module Mi,j of CONCRETESYS and ABSTRACTSYS is a stage com-
position as in Def. 7.8 and represented in Fig. 12.

Definition 7.8 (Stage). LetM be 〈~I, ~O, ~F , π〉. Its stage composition S = 〈~IS , ~OS , ~FS , πS〉 is the parallel composition
M |M ′, where M ′ = 〈~I ′, ~O′, ∅, π′〉 is the reference for M , defined as

• ~I ′ =̇
⋃

p∈~I p
′;

• ~O′ =̇
⋃

p∈~O p
′;

• π′ =̇ ∃~F : π[~I/~I ′; ~O/~O′] ∧
∧

f∈~F ¬f .

As shown in Figure 13, the miter construction consists in linking input ports of reference (~IR) and faulty (~IF )
architectures, and provide a TLE signal, expressed over the Boolean outputs ~O (i.e., the equality between the outputs
of reference and fault architectures). As a result, the formula representing the miter construction is as follows:

TLE =̇
∨
o∈~O

¬o, EQ =̇
∧

i∈{1..|~IR|}

~IR[i] = ~IF [i]

MITER =̇ TLE ∧ EQ

Given that CONCRETESYS is a formula over ~I = ~IR|~IF and ~O, the resulting cut set computation for TLE is

∃~I, ~O : (CONCRETESYS ∧MITER)

The result is a Boolean formula in the ~F1 . . . ~Fn variables. The idea is to replace CONCRETESYS with an equiva-
lent ABSTRACTSYS, and to exploit its structure to optimize the computation. Specifically, we consider a specialized
class of components, including the typical TMR constructs (described in Figure 2), and a class of abstractors and
concretizers induced by a set of stage-specific predicates.

7.4.2. Stage abstraction and concretization

Predicate abstraction is a form of abstraction where the concrete state space is partitioned according to the assignments
induced on a set of predicates P. In this case the concrete space corresponds to the cross product of domains of the
port variables and fault events. Given the stage S for the module M , we define the corresponding set of predicates
P =̇ PI ∪ PO, where PI =̇ {(p = p′)|p ∈ ~I}, and similarly for PO. These predicates express the equivalence between
the ports of M and the corresponding ports of the reference component M ′.

The abstractor AS is defined as

〈~I ∪ ~I ′,O, ∅,
∧
p∈~I

opp=p′ ↔ (p = p′)〉

where O is the set of Boolean variables opp=p′ , referred to as (output) predicate names. Similarly, the concretizer CS ,
where the predicates ipp=p′ ∈ I, is defined as

〈I, ~O ∪ ~O′, ∅,
∧
p∈~O

ipp=p′ ↔ (p = p′)〉

7.4.3. Optimizing the computation

We follow the notation of Theorem 7.1. For the sake of clarity, we may use the notation of a component to denote its
transfer formula. Without loss of generality, we consider the case where layers have only one module, i.e. mi = 1 and
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Li coincides with Si, i.e. a stage composition. In this setting, CLAi becomes (Ci . Si . Ai). Being CONCRETESYS
and ABSTRACTSYS equivalent, we can compute the same result by quantifying out in ABSTRACTSYS the input and
output variables of the modules M , the concretizers C and the abstractors A.

∃~In, ~I ′n, ~On, ~O
′
n, . . . , ~I1, ~I

′
1, ~O1, ~O

′
1, I,O : (An+1 ∧ (Cn . Sn . An) ∧ . . .∧

(C2 . S2 . A2) ∧ (C1 . S1 . A1) ∧MITER)

Exploiting the structure of ABSTRACTSYS, we can “push in” the quantifiers, thus obtaining

∃I,O : (An+1 ∧ (∃~In, ~I ′n, ~On, ~O
′
n, : (Cn . Sn . An)︸ ︷︷ ︸) ∧ . . .∧

(∃~I1, ~I ′1, ~O1, ~O
′
1 : (C1 . S1 . A1)︸ ︷︷ ︸) ∧MITER)

The underbraces make explicit the quantifications associated with a sequential composition of AllSMT computa-
tions. The advantage is to trade one possibly very expensive quantification with many smaller, and possibly factoriz-
able, quantifications. This technique provides a significant advantage when each formula Ci .Si .Ai is a composition
of basic components (e.g., (Ci1|Ci2) . (Si1|Si2) . (Ai1|Ai2)), since in this case the quantifiers can be pushed in even
further. In a sense, the application of the concretization/abstraction around each module has the effect of separating the
“theory reasoning”. The remaining free variables are the Boolean predicate names, and the remaining quantification
can be obtained by standard BDD-based techniques.

7.4.4. Hypothesis discharge and abstraction caching

In order to apply the transformation described above, it is necessary to prove that this class of components satisfies the
hypothesis of Theorem 7.1. Specifically, we need to show for all i, j that

Ai+1,j . Ci,j . Si,j . Ai,j ≡ Si,j . Ai,j

for all the stages S obtained from the components M that are used in the architecture under analysis. Interestingly, the
check for equivalence can be reduced to the satisfiability of an SMT formula encoding that, under the same inputs,
Ai+1,j . Ci,j . Si,j . Ai,j and Si,j . Ai,j can produce different outputs2.

In order to optimize the overall computation, we also exploit the fact that the transfer functions of the abstract
stages remain the same, from problem to problem. Thus the results of the quantification

CSAi =̇ ∃~Ii~I ′i ~Oi
~O′i : (Ci . Si . Ai)

for each of the stage compositions of redundant schemas in Figure 2 can be computed once and for all, cached as a
library, and reused when needed.

8. Experimental evaluation

8.1. Implementation

The approach described in the previous Sections has been implemented in a tool for reliability analysis of redundant
architectures, on top of the following verification backends.

• OCRA [CDT13] is a framework for contract-based design. It supports an architectural specification language,
where components are associated with ports of various types, including booleans, reals, uninterpreted objects and
functions. In an OCRA architectural decomposition the leaves can be associated with behavioral descriptions
expressed in the language of NUXMV. OCRA can generate a monolithic description in the NUXMV language.

• NUXMV is a model checker [CCD+14] for finite- and infinite-state systems. At its core, NUXMV uses the SMT
solver MATHSAT [BBC+05, CGSS13], which includes several theories like linear arithmetic over reals and in-
tegers, difference logic, bit vectors, uninterpreted functions, and equality. NUXMV provides various SMT-based
verification algorithms, and various engines for predicate abstraction [DBL07, DBL09].

2 Clearly, in order for the equivalence to hold, the formula must be unsatisfiable.
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1 COMPONENT NETWORK system
INTERFACE
INPUT PORT in_1 : real;
INPUT PORT in_2 : real;

5 INPUT PORT in_3 : real;
INPUT PORT in_4 : real;
OUTPUT PORT out : real;

REFINEMENT
10 sub module_1 : MODULE_2_INPUTS_TYPE;

sub module_2 : MODULE_2_INPUTS_TYPE;
sub module_3 : MODULE_1_INPUT_TYPE;
sub module_4 : MODULE_2_INPUTS_TYPE;
sub module_5 : MODULE_1_INPUT_TYPE;

15 sub module_6 : MODULE_3_INPUTS_TYPE;

CONNECTION module_1.in_1 := in_1;
CONNECTION module_1.in_2 := in_2;
CONNECTION module_2.in_1 := in_3;

20 CONNECTION module_2.in_2 := in_4;
CONNECTION module_3.in_1 := module_1.out;
CONNECTION module_4.in_1 := module_1.out;
CONNECTION module_4.in_2 := module_2.out;
CONNECTION module_5.in_1 := module_2.out;

25 CONNECTION module_6.in_1 := module_3.out;
CONNECTION module_6.in_2 := module_4.out;
CONNECTION module_6.in_3 := module_5.out;
CONNECTION out := module_6.out;

30 COMPONENT MODULE_1_INPUT_TYPE
INTERFACE
INPUT PORT in_1 : real;
OUTPUT PORT out : real;
PARAMETER nominal_behavior :

35 real -> real;
PARAMETER can_fail : boolean;

COMPONENT MODULE_2_INPUTS_TYPE
INTERFACE

40 INPUT PORT in_1 : real;
INPUT PORT in_2 : real;
OUTPUT PORT out : real;
PARAMETER nominal_behavior :

real -> real;
45 PARAMETER can_fail : boolean;

COMPONENT MODULE_3_INPUTS_TYPE
INTERFACE
INPUT PORT in_1 : real;

50 INPUT PORT in_2 : real;
INPUT PORT in_3 : real;
OUTPUT PORT out : real;
PARAMETER nominal_behavior :

real -> real;
55 PARAMETER can_fail : boolean;

Fig. 15. The OCRA code for the architecture in Figure 3

• XSAP [BBC+16] is a tool for model based safety analysis built on top of NUXMV. XSAP extends the verifica-
tion engines of NUXMV to implement various algorithms [BCT07, BCGM15] for safety analysis, including the
generation of fault trees and FMEA tables. It supports the synthesis of minimal cut sets, and the extraction of the
reliability functions.

Architecture modeling

The language of OCRA is used to specify the architecture under analysis. The user can follow some specific (but
non-restrictive) guidelines, leveraging a library of OCRA components, including the TMR in Figure 2 and other basic
components. A leaf component of the OCRA architecture is linked to a corresponding SMV implementation. We
model each component with a Boolean can fail parameter, which if set to False forces the component to behave
infallibly, i.e., just like the computing module. The library of abstract components consists of the various different
TMR configurations described in Figure 2, the basic identity, voters, and simple computing units of various arity.

The OCRA description for the architecture in Figure 3 is reported in Figure 15. The architecture description
requires linking each leaf components to an SMV implementation.

Generation for TLE miter

The miter-based description of the TLE is automatically generated by a dedicated procedure that manipulates the
abstract syntax tree of the OCRA model. The description of the architecture under analysis is instantiated twice: for
the instance representing the architecture under analysis, the CanFail parameters are set to True; for the other,
representing the reference architecture, CanFail parameters all set to False. Both replicas are fed with the same
uninterpreted function symbols, representing the behavior of the basic modules. The output is also an OCRA file,
which is then connected to the suitable implementation modules in NUXMV. Then, the monolithic NUXMV file is
generated.

The user can specify which techniques should be used i.e., concrete- or abstraction-based. In case of the latter,
the tool composes the architecture by computing the abstract counterpart of each module. This operation is performed
after the correctness check that the hypotheses of Theorem 7.1 are met. Given the size of the modules that we are
considering, the hypothesis check requires a negligigle time to be performed. The steps described in Section 7.4.4 rely
on the MATHSAT SMT solver [CGSS13]. A memoization mechanism is implemented so that the abstract counterpart
of a basic component is computed only once, and then stored into a “cache” folder. During the generation of the abstract
architecture, the tool also builds an ordering of the Boolean variables present in the system, in order to optimize the
BDD construction. The ordering is used statically, and it is constructed starting from the inputs, and following the
architecture topology with an increasing path distance.
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Computation of Minimal Cut Sets

The file representing the TLE can be fed directly to XSAP. Two methods are available for the computation of MCSs.
The basic method is basically a quantifier elimination on the SMT(EUF) formula corresponding to the TLE. Specif-
ically, it is a call to an AllSMT routine [LNO06], where the only remaining variables (i.e., the ones that are not
quantified) are the Boolean fault mode variables.

When the compositional method is applied, the actual computation corresponds to the construction of the BDD of
the set of MCS. This is basically a sequence of projections predicate variables, which is carried out by means of BDD-
based projection routines [Som98], proceeding bottom-up. This technique uses the variable ordering information,
generated in the previous phase, which seems to give better performance compared to dynamical ordering construction.

Reliability function extraction

The MCS are compacted by exploiting the conversion in form of Binary Decision Diagrams [Bry86]. The construction
provides the best performance by disabling dynamic reordering, and using a statically computed ordering, based on
the topology of the analyzed system. In detail, considering the example in Expression 8, the ordering starts with faults
and output predicates for the module M1, followed by the variables of M2, then the ones from M3 (D modules do not
have variables), and so on. The reliability function can be emitted in different formats, including Matlab/Octave and
Python. The flow enables detailed analytical evaluations that can be carried out using specific numerical computation
software tools. For example, the plots illustrated in Section 6 are obtained automatically from the model of the TMR
chains of [HTK10].

8.2. Experimental set up

The setting for the experimental evaluation comprises the generation of the abstract modules, for each of the possible
pairs of fallible/reference components in the library represented in Figure 2, and then caching their machine represen-
tation. This operation takes on average 5 seconds with a maximum time of 10 seconds. The time needed to initialize
the system is not taken into account in the scalability evaluation.

We selected a set of benchmarks of different forms, with increasing size. For each of them, we compare the
basic and compositional algorithms for MCS computations. Whenever both techniques terminated, we checked the
correctness by comparing the corresponding sets of MCSs.

We ran the experiments on an Intel Xeon E3-1270 at 3.40GHz, with a timeout of 2000 seconds, and a memory
limit of 1 GB. All the experiments are available for inspection at http://es.fbk.eu/people/mattarei/
dist/redundant_architectures_analysis.

We compare two algorithms: the direct application of AllSMT (described in Section 6) and the improvement based
on predicate abstraction as described in Section 7. The time for initializing the library in the latter case accounts in total
for less than 1 minute. This cost is payed only once, and the necessary abstractions can be cached and are included in
the toolset.

8.2.1. Benchmarks

The experiments consider networks of redundant components with different combinations of structures, for a total of
5200 benchmark problems.

In order to evaluate the performance of modular abstraction, we consider the following architectural structures:

• Linear: chains of TMR components of the same type, i.e., all TMR V111, V121, or V123;
• Rectangular: sequence of a repeating structure composed of 2 TMRs with 1 (triple) input, and 2 TMRs with 2

(triple) inputs. Figure 16 shows a graphical representation of a rectangular structure of length N . The total number
of redundant modules for a rectangular system is 4 ∗N ;

• Random: a randomly generated structure with 1 (triple) input and 1 (triple) output. Given a size n, representing
the number of redundant components in the system, the maximum diameter of the random structure is bounded to√
n.

For each family of benchmarks we considered different sizes, thus the (SMT-based) concrete model can range
from 19 state variables (i.e., 8 Boolean and 11 Real) to 19206 (i.e., 9600 Boolean and 9606 Real). The detail on each
benchmark family is reported in Table 1.

http://es.fbk.eu/people/mattarei/dist/redundant_architectures_analysis
http://es.fbk.eu/people/mattarei/dist/redundant_architectures_analysis


26 M. Bozzano, A. Cimatti, and C. Mattarei

T

T

T

T

T

T

T

T

1 N…

Fig. 16. Rectangular Structures

Table 1. Total Number of Benchmarks

Benchmark # Instances # State Variables Uninterpreted MCSFamily Boolean Real Functions
Linear 200 ∗ 3 8 ∼ 2400 11 ∼ 2403 1 ∼ 200 4 ∼ 2394

Rectangular 200 ∗ 3 32 ∼ 9600 38 ∼ 9606 4 ∼ 800 16 ∼ 13197
Random 200 ∗ 20 8 ∼ 2000 11 ∼ 2000 1 ∼ 200 1 ∼ 1800

Total 5200

8.3. Results

8.3.1. Linear structures

We first analyzed scalability on linear TMR structures. The results of this comparison are presented in Figure 17: the
x axis represents the length of the chain, while on the y axis we report the time needed to compute the minimal cut
sets.

The pure SMT generation reaches the timeout for TMR chains with 1 (V111), 2 (V121), and 3 (V123) voters with
a length that is respectively 20, 19, and 16 modules. Differently, the predicate abstraction based approach is able to
generate the minimal cut sets for a V123 TMR chain of length 200 within 400 seconds. In case of V111 and V121, the
computation for all instances terminated successfully under 14 and 65 seconds.

The chains with two and three voters are much harder to deal with, as witnessed by the relative degradation in
performance of both techniques. In fact, the presence of additional voters increases the number of fault variables, and
the overall number of cut sets. However, the compositional algorithm degrades much less than the basic one.

8.3.2. Rectangular structures

We then analyzed the rectangular structure as in Figure 16. These architectures have the characteristics of extending the
linear benchmarks by adding a second dimension to the structure. The base size of a rectangular structure is composed
of four TMRs (i.e., modules “T” in Figure 16, each link represents a triple signal), thus the complexity increases much
faster compared to a linear structure. This benchmark shows the scalability issues that a pure SMT-based approach
experiences when dealing with this structures. In fact, being this benchmark more complex compared to the linear
structures, the concrete technique was not able to compute the set of the minimal cut sets for a structure larger than 4
modules, which decreases to 3 in case of 3 voters structures. Differently, the predicate abstraction technique was able
to compute the result of a structure with 196 base modules in case of 1 voters TMRs. When considering structures
based on 2 and 3 voters, the predicate abstraction completed the analysis for respectively 122 and 61 modules.

8.3.3. Random structures

In order to evaluate the performance of modular abstraction, we built a random generator of DAG-like structures. The
problems are generated by picking a module type from the set of possible ones, adding it to the network with inputs
selected from inputs of the system or outputs of previously introduced modules, until the target system size is reached.
In order to be able to relate numbers of modules and verification complexity, we imposed that maximal diameter of
the system of being not greater than

√
n where n is the number of redundant modules. For the architecture of Figure 3,
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used in this paper as a running example [AS74], the modular abstraction technique is able to perform FTA in 0.1
seconds, while the concrete case takes 1.8 seconds. Both methods construct the set of 102 minimal cut sets.

Figure 19 shows the scalability performance on a set of 4000 randomly generated architectures, distributed in 20
instances for each of the 200 possible count of redundant modules. Each point in this chart represents the average
time needed to compute the 20 instances of the problem. The results of this test clearly illustrate the improvement of
the predicate abstraction technique, which is always able to perform the analysis in less than 100 seconds for each
instance, while the SMT-based approach went above the time-out on all architectures with more than 17 modules.

The gain in performance of the predicate abstraction technique can be observed by analyzing the overall results.
Figure 20 shows a cactus chart considering all instances described in this section, where a point (x, y) represents
the time x required to solve the problem y, by sorting all problems by execution time. Analyzing those results, the
advantage of the modular abstraction technique is evident considering that it was able to solve 4979 instances (under
the time-out of 2000 seconds), while this number is reduced to 363 in case of the SMT-based approach.

In the monolithic case, the bottleneck is clearly the AllSMT procedure (with optimizations described in [BCT07]),
due to the excessive number of cut sets. In the compositional case, the main source of inefficiency is the generation
of the BDD. This cost appears to be hard to limit, but we remark that we are obtaining an expensive quantification by
partitioning and inlining.

8.4. General remarks

The technique based on Predicate Abstraction demonstrated a significant performance advantage, compared to the
AllSMT one. Table 2 provides an overview of the time computation needed by the two techniques to perform the min-
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Table 2. Predicate Abstraction vs. AllSMT: required resources

Solved Instances SMT PA
Timeout Total Time Timeout Total Time

363 2000 17869 0.67 164
4979 NA NA 2000 287299

Table 3. Predicate Abstraction vs. AllSMT: solved instances

Timeout Solved Instances Total Time Solved Instances
SMT PA SMT PA

100 118 659 102 143 258
101 223 2412 103 267 1113
102 307 4659 104 345 2656
103 360 4904 105 363 4729

imal cut sets computation. In particular, the AllSMT technique required a timeout of 2000 seconds (for each instance)
to solve 384 benchmarks, while the approach based on Predicate Abstraction solves the same amount of problems
with a timeout of 0.67 seconds, proving a gain in performance of 3 orders of magnitude. This result guarantees the
possibility to evaluate significantly more architectural patterns in the same amount of time. Analyzing this numbers
from a different perspective, while the SMT-based technique solves 363 instances, the predicate abstraction analyzes
more than 1 million (i.e., (2000/0.67) ∗ 363 = 1083582) architectures with similar complexity.

Moreover, given a timeout of 10 seconds (for each benchmark) the AllSMT technique is able to analyze 223
architectures, while the modular abstraction approach solved 2412 problems. Similarly, having a total time limit of
100k seconds (i.e., 27 hours) the two approaches would solve 363 and 4729 instances, where the latter refers to the
abstraction based technique. Those results are listed in Table 3.

9. Conclusions and Future Work

Redundancy plays a fundamental role in the design of complex critical systems. In this paper we presented a new
approach to the automated analysis of redundancy architectures, which is able to produce a symbolic representation of
the reliability function from the architectural description.

The process relies on formal methods in different phases: we model the architecture using SMT(EUF) [BSST09];
we adopt a miter construction [Bra93] to describe the occurrence of a top-level failure; we reduce the problem of
extracting the set of relevant fault configurations by reduction to an AllSMT problem [LNO06]; predicate abstrac-
tion [CCF+07] is at the core of a compositional method for the efficient extraction of the set of cut sets; Binary
Decision Diagrams [Bry92] are used to extract a symbolic representation of the reliability function.

The proposed approach allows us to automatically obtain results that previously could be obtained only with
manual techniques, and to generalize them by relaxing a number of restrictive hypotheses. The proposed compositional
method scales very well, and allows us to analyze configurations of realistic size, composed by thousands of basic
blocks. The performance advantage of the abstraction method can be also used to analyze a higher number of different
possible designs, thus covering a larger space in the same amount of time.

In the future, we will investigate the following directions. First, we will extend the method to deal with architec-
tures where redundancy is applied to blocks processing real-valued signals. Here, different errors can be classified
according to numerically characterized discrepancies (e.g., the distance with respect to the reference signal), and
different solutions for voting (e.g., average, median value) are possible. Second, we will investigate the case where
faults are associated with dynamics, and the problem is no longer “combinatorial” in nature. Particularly interesting
is the extension to a probabilistic analysis based on Markov Decision Processes [BCK+14]. Finally, we will apply
the proposed techniques to the problem of the automated exploration of the design space. More specifically, we will
integrate the techniques proposed here within an engine to solve multi-valued optimization cost functions, so that the
best compromise between cost, weight, power consumption, and reliability can be explored.
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A. Proofs

Lemma 7.1(Sequential equivalence). Given the combinatorial components M , M1, and M2, if M1 ≡ M2 then
M .M1 ≡M .M2 and M1 . M ≡M2 . M .

Proof:
if M1 = 〈~I1, ~O1, ~F1, π1〉, M2 = 〈~I2, ~O2, ~F2, π2〉, and M = 〈~I, ~O, ~F , π〉,
then by hypothesis

∀~I1, ~O1, ~O2, ~F1.(

(π1(~I1, ~O1, ~F1) ⇐⇒ π2(~I1, ~O2, ~F1)) ∧ ( ~O1 ⇐⇒ ~O2))∧
∀~I, ~I2, ~O, ~F .(
(π(~I, ~O, ~F ) ⇐⇒ π(~I2, ~O, ~F )) ∧ (~I ⇐⇒ ~I2))

iff

∀~I1, ~O1, ~O2, ~F1, ~I, ~I2, ~O, ~F .(

(π1(~I1, ~O1, ~F1) ⇐⇒ π2(~I1, ~O2, ~F1))∧
(π(~I, ~O, ~F ) ⇐⇒ π(~I2, ~O, ~F ))∧
( ~O1 ⇐⇒ ~O2) ∧ (~I ⇐⇒ ~I2))

implies

∀~I1, ~O1, ~O2, ~F1, ~I, ~I2, ~O, ~F .(

(π1(~I1, ~O1, ~F1) ⇐⇒ π2(~I1, ~O2, ~F1))∧
(π(~I, ~O, ~F ) ⇐⇒ π(~I2, ~O, ~F )))

implies (i.e., (a ⇐⇒ b) ∧ (c ⇐⇒ d) =⇒ (a ∧ c) ⇐⇒ (a ∧ d))

∀~I1, ~O1, ~O2, ~F1, ~I, ~I2, ~O, ~F .(

(π1(~I1, ~O1, ~F1) ∧ π(~I, ~O, ~F )) ⇐⇒
(π2(~I1, ~O2, ~F1) ∧ π(~I2, ~O, ~F )))

=⇒

∀~I1, ~O, ~F , ~F1.(∃ ~O1, ~O2, ~I, ~I2.(

(π1(~I1, ~O1, ~F1) ∧ π(~I, ~O, ~F ) ∧ ( ~O1 ⇐⇒ ~I)) ⇐⇒
(π2(~I1, ~O2, ~F1) ∧ π(~I2, ~O, ~F )) ∧ ( ~O2 ⇐⇒ ~I2)))

that expresses the system defined as

M1 . M ≡M2 . M

Similarly for the case

M .M1 ≡M .M2.

Lemma 7.2(Parallel equivalence). Given the combinatorial components S1, S2, S3, S4, if S1 ≡ S2 ∧ S3 ≡ S4 then
S1|S3 ≡ S2|S4.

Proof:
if S1 = 〈~I1, ~O1, ~F1, π1〉, S2 = 〈~I2, ~O2, ~F2, π2〉,
S3 = 〈~I3, ~O3, ~F3, π3〉, S4 = 〈~I4, ~O4, ~F4, π4〉
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then by hypothesis

∀~I ′, ~O′, ~F ′.(
π1(~I ′, ~O′, ~F ′) ⇐⇒ π2(~I ′, ~O′, ~F ′))∧
∀~I ′′, ~O′′, ~F ′′.(
π3(~I ′′, ~O′′, ~F ′′) ⇐⇒ π4(~I ′′, ~O′′, ~F ′′))

then

∀~I ′, ~O′, ~F ′, ~I ′′, ~O′′, ~F ′′.(
π1(~I ′, ~O′, ~F ′) ⇐⇒ π2(~I ′, ~O′, ~F ′)∧
π3(~I ′′, ~O′′, ~F ′′) ⇐⇒ π4(~I ′′, ~O′′, ~F ′′))

implies

∀~I ′, ~O′, ~F ′, ~I ′′, ~O′′, ~F ′′.(
π1(~I ′, ~O′, ~F ′) ∧ π3(~I ′′, ~O′′, ~F ′′) ⇐⇒
π2(~I ′, ~O′, ~F ′) ∧ π4(~I ′′, ~O′′, ~F ′′))

that expresses the system defined as

S1|S3 ≡ S2|S4.

Lemma 7.3(Inversion equivalence). Given the combinatorial components M1, M2, M3, M4, if M1 ; M2 and
M3 ;M4 then (M1|M3) . (M2|M4) ≡ (M1 . M2)|(M3 . M4).

Proof.

(∃ ~O1, ~O3, ~I2, ~I4 : (π1(~I1, ~O1, ~F1) ∧ π3(~I3, ~O3, ~F3)) ∧ (π2(~I2, ~O2, ~F2) ∧ π4(~I4, ~O4, ~F4)) ∧ ~O1 = ~I2 ∧ ~O3 = ~I4) ≡
(∃ ~O1, ~O3, ~I2, ~I4 : (π1(~I1, ~O1, ~F1) ∧ π3(~I3, ~O3, ~F3)) ∧ (π2(~I2, ~O2, ~F2) ∧ π4(~I4, ~O4, ~F4)) ∧ ~O1 = ~I2 ∧ ~O3 = ~I4)

=⇒
(∃ ~O1, ~O3, ~I2, ~I4 : (π1(~I1, ~O1, ~F1) ∧ π3(~I3, ~O3, ~F3)) ∧ (π2(~I2, ~O2, ~F2) ∧ π4(~I4, ~O4, ~F4)) ∧ ~O1 = ~I2 ∧ ~O3 = ~I4) ≡
(∃ ~O1, ~I2, ~O3, ~I4 : (π1(~I1, ~O1, ~F1) ∧ π2(~I2, ~O2, ~F2) ∧ ~O1 = ~I2) ∧ (π3(~I3, ~O3, ~F3) ∧ π4(~I4, ~O4, ~F4) ∧ ~O3 = ~I4))

=⇒
(∃ ~O1, ~O3, ~I2, ~I4 : (π1(~I1, ~O1, ~F1) ∧ π3(~I3, ~O3, ~F3)) ∧ (π2(~I2, ~O2, ~F2) ∧ π4(~I4, ~O4, ~F4)) ∧ ~O1 = ~I2 ∧ ~O3 = ~I4) ≡
(∃ ~O1, ~I2 : π1(~I1, ~O1, ~F1) ∧ π2(~I2, ~O2, ~F2) ∧ ~O1 = ~I2) ∧ (∃ ~O3, ~I4 : π3(~I3, ~O3, ~F3) ∧ π4(~I4, ~O4, ~F4) ∧ ~O3 = ~I4)

=⇒
(M1|M3) . (M2|M4) ≡ (M1 . M2)|(M3 . M4).

Lemma 7.4(Associativity). Given the combinatorial components M1, M2, and M3, if M1 ; M2 and M2 ; M3

then (M1 . M2) . M3 ≡M1 . (M2 . M3) and (M1|M2)|M3 ≡M1|(M2|M3).

Proof (sequential case).



34 M. Bozzano, A. Cimatti, and C. Mattarei

(∃ ~O1, ~I2, ~O2, ~I3 : π1(~I1, ~O1, ~F1) ∧ π2(~I2, ~O2, ~F2) ∧ π3(~I3, ~O3, ~F3) ∧ ~O1 = ~I2 ∧ ~O2 = ~I3) ≡
(∃ ~O1, ~I2, ~O2, ~I3 : π1(~I1, ~O1, ~F1) ∧ π2(~I2, ~O2, ~F2) ∧ π3(~I3, ~O3, ~F3) ∧ ~O1 = ~I2 ∧ ~O2 = ~I3)

=⇒
(∃ ~O1, ~I2, ~O2, ~I3 : (π1(~I1, ~O1, ~F1) ∧ π2(~I2, ~O2, ~F2) ∧ ~O1 = ~I2) ∧ π3(~I3, ~O3, ~F3) ∧ ~O2 = ~I3) ≡
(∃ ~O1, ~I2, ~O2, ~I3 : π1(~I1, ~O1, ~F1) ∧ (π2(~I2, ~O2, ~F2) ∧ π3(~I3, ~O3, ~F3) ∧ ~O2 = ~I3) ∧ ~O1 = ~I2)

=⇒
(∃ ~O2, ~I3 : (∃ ~O1, ~I2 : π1(~I1, ~O1, ~F1) ∧ π2(~I2, ~O2, ~F2) ∧ ~O1 = ~I2) ∧ π3(~I3, ~O3, ~F3) ∧ ~O2 = ~I3) ≡
(∃ ~O1, ~I2 : π1(~I1, ~O1, ~F1) ∧ (∃ ~O2, ~I3 : π2(~I2, ~O2, ~F2) ∧ π3(~I3, ~O3, ~F3) ∧ ~O2 = ~I3) ∧ ~O1 = ~I2)

=⇒
(M1 . M2) . M3 ≡M1 . (M2 . M3).

Proof (parallel case).

(π1(~I1, ~O1, ~F1) ∧ π2(~I2, ~O2, ~F2)) ∧ π3(~I3, ~O3, ~F3) ≡
π1(~I1, ~O1, ~F1) ∧ (π2(~I2, ~O2, ~F2) ∧ π3(~I3, ~O3, ~F3))

=⇒
(M1|M2)|M3 ≡M1|(M2|M3).
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1 function prob = abraham(C2M2, C2M3, C2V1, C2V3, C2V2, C6M2, C3V2, C3V1, C6M1, C5M2, C5M3,
C4M2, C4M3, C4M1, C3M3, C3M2, C3M1, C3V3, C5V1, C5V2, C5V3, C4V1, C4V2, C1V1, C1V2,
C1M2, C1M3, C6V1, C6V2, C6V3, C1M1, C1V3, C4V3, C6M3, C5M1, C2M1)

EXPR0000 = (1 - C6V1) * (C6V2 * C6V3) + C6V1 * ((1 - C6V2) * C6V3 + C6V2);
EXPR0001 = (1 - C1M1) * EXPR0000 + C1M1;
EXPR0002 = (1 - C1M2) * ((1 - C1M3) * EXPR0000 + C1M3 * EXPR0001) + C1M2 * ((1 - C1M3)

* EXPR0001 + C1M3);
5 EXPR0003 = (1 - C1V3) * EXPR0002 + C1V3;

EXPR0008 = (1 - C1V2) * EXPR0003 + C1V2;
EXPR0004 = (1 - C1V1) * ((1 - C1V2) * EXPR0002 + C1V2 * EXPR0003) + C1V1 * EXPR0008;
EXPR0012 = (1 - C1V1) * EXPR0003 + C1V1;
EXPR0016 = (1 - C1V1) * ((1 - C1V2) * EXPR0002 + C1V2) + C1V1;

10 EXPR0021 = (1 - C1V1) * EXPR0008 + C1V1;
EXPR0005 = (1 - C4V3) * ((1 - C6M3) * EXPR0004 + C6M3) + C4V3;
EXPR0009 = (1 - C4V3) * ((1 - C6M3) * EXPR0008 + C6M3) + C4V3;
EXPR0013 = (1 - C4V3) * ((1 - C6M3) * EXPR0012 + C6M3) + C4V3;
EXPR0017 = (1 - C4V3) * ((1 - C6M3) * EXPR0016 + C6M3) + C4V3;

15 EXPR0022 = (1 - C4V3) * ((1 - C6M3) * EXPR0021 + C6M3) + C4V3;
EXPR0006 = (1 - C4V2) * EXPR0005 + C4V2;
EXPR0010 = (1 - C4V2) * EXPR0009 + C4V2;
EXPR0014 = (1 - C4V2) * EXPR0013 + C4V2;
EXPR0018 = (1 - C4V2) * EXPR0017 + C4V2;

20 EXPR0023 = (1 - C4V2) * EXPR0022 + C4V2;
EXPR0007 = (1 - C4V1) * ((1 - C4V2) * EXPR0004 + C4V2) + C4V1;
EXPR0011 = (1 - C4V1) * ((1 - C4V2) * EXPR0008 + C4V2) + C4V1;
EXPR0015 = (1 - C4V1) * ((1 - C4V2) * EXPR0012 + C4V2) + C4V1;
EXPR0019 = (1 - C4V1) * ((1 - C4V2) * EXPR0016 + C4V2) + C4V1;

25 EXPR0024 = (1 - C4V1) * ((1 - C4V2) * EXPR0021 + C4V2) + C4V1;
EXPR0050 = (1 - C5V3) * ((1 - C4V1) * EXPR0005 + C4V1) + C5V3;
EXPR0051 = (1 - C5V3) * ((1 - C4V1) * EXPR0009 + C4V1) + C5V3;
EXPR0052 = (1 - C5V3) * ((1 - C4V1) * EXPR0013 + C4V1) + C5V3;
EXPR0053 = (1 - C5V3) * ((1 - C4V1) * EXPR0017 + C4V1) + C5V3;

30 EXPR0055 = (1 - C5V3) * ((1 - C4V1) * EXPR0022 + C4V1) + C5V3;
EXPR0034 = (1 - C5V2) * ((1 - C5V3) * EXPR0006 + C5V3) + C5V2;
EXPR0035 = (1 - C5V2) * ((1 - C5V3) * EXPR0010 + C5V3) + C5V2;
EXPR0036 = (1 - C5V2) * ((1 - C5V3) * EXPR0014 + C5V3) + C5V2;
EXPR0037 = (1 - C5V2) * ((1 - C5V3) * EXPR0018 + C5V3) + C5V2;

35 EXPR0039 = (1 - C5V2) * ((1 - C5V3) * EXPR0023 + C5V3) + C5V2;
EXPR0020 = (1 - C3V3) * ((1 - C5V1) * ((1 - C5V2) * ((1 - C5V3) * ((1 - C4V1) * ((1 -
C4V2) * EXPR0008 + C4V2 * EXPR0009) + C4V1 * EXPR0010) + C5V3 * EXPR0011) + C5V2 *
EXPR0051) + C5V1 * EXPR0035) + C3V3 * ((1 - C5V1) * ((1 - C5V2) * EXPR0011 + C5V2) +
C5V1);

EXPR0026 = (1 - C3V3) * ((1 - C5V1) * ((1 - C5V2) * ((1 - C5V3) * ((1 - C4V1) * ((1 -
C4V2) * EXPR0016 + C4V2 * EXPR0017) + C4V1 * EXPR0018) + C5V3 * EXPR0019) + C5V2 *
EXPR0053) + C5V1 * EXPR0037) + C3V3 * ((1 - C5V1) * ((1 - C5V2) * EXPR0019 + C5V2) +
C5V1);

EXPR0027 = (1 - C3V3) * ((1 - C5V1) * ((1 - C5V2) * ((1 - C5V3) * ((1 - C4V1) * ((1 -
C4V2) * EXPR0021 + C4V2 * EXPR0022) + C4V1 * EXPR0023) + C5V3 * EXPR0024) + C5V2 *
EXPR0055) + C5V1 * EXPR0039) + C3V3 * ((1 - C5V1) * ((1 - C5V2) * EXPR0024 + C5V2) +
C5V1);

EXPR0029 = (1 - C3V3) * ((1 - C5V1) * ((1 - C5V2) * ((1 - C5V3) * ((1 - C4V1) * ((1 -
C4V2) * EXPR0012 + C4V2 * EXPR0013) + C4V1 * EXPR0014) + C5V3 * EXPR0015) + C5V2 *
EXPR0052) + C5V1 * EXPR0036) + C3V3 * ((1 - C5V1) * ((1 - C5V2) * EXPR0015 + C5V2) +
C5V1);

40 EXPR0038 = (1 - C3V3) * EXPR0035 + C3V3;

B. Matlab function example

Figure 21 shows the reliability function of the architecture described in Figure 3. The terms CiMj represent the failure
of the module j inside the component i, and similarly for CiVj where Vj represents the voter j.
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41 EXPR0041 = (1 - C3V3) * EXPR0037 + C3V3;
EXPR0042 = (1 - C3V3) * EXPR0039 + C3V3;
EXPR0044 = (1 - C3V3) * EXPR0036 + C3V3;
EXPR0054 = (1 - C3V3) * ((1 - C5V1) * EXPR0051 + C5V1) + C3V3;

45 EXPR0057 = (1 - C3V3) * ((1 - C5V1) * EXPR0053 + C5V1) + C3V3;
EXPR0058 = (1 - C3V3) * ((1 - C5V1) * EXPR0055 + C5V1) + C3V3;
EXPR0060 = (1 - C3V3) * ((1 - C5V1) * EXPR0052 + C5V1) + C3V3;
EXPR0025 = (1 - C3M1) * EXPR0027 + C3M1;
EXPR0030 = (1 - C3M1) * EXPR0029 + C3M1;

50 EXPR0040 = (1 - C3M1) * EXPR0042 + C3M1;
EXPR0045 = (1 - C3M1) * EXPR0044 + C3M1;
EXPR0056 = (1 - C3M1) * EXPR0058 + C3M1;
EXPR0061 = (1 - C3M1) * EXPR0060 + C3M1;
EXPR0028 = (1 - C3M2) * ((1 - C3M1) * EXPR0026 + C3M1) + C3M2;

55 EXPR0031 = (1 - C3M2) * EXPR0025 + C3M2;
EXPR0043 = (1 - C3M2) * ((1 - C3M1) * EXPR0041 + C3M1) + C3M2;
EXPR0046 = (1 - C3M2) * EXPR0040 + C3M2;
EXPR0059 = (1 - C3M2) * ((1 - C3M1) * EXPR0057 + C3M1) + C3M2;
EXPR0062 = (1 - C3M2) * EXPR0056 + C3M2;

60 EXPR0076 = (1 - C3M3) * ((1 - C3M2) * EXPR0020 + C3M2 * EXPR0025) + C3M3 * EXPR0031;
EXPR0077 = (1 - C3M3) * ((1 - C3M2) * EXPR0038 + C3M2 * EXPR0040) + C3M3 * EXPR0046;
EXPR0079 = (1 - C3M3) * ((1 - C3M2) * EXPR0054 + C3M2 * EXPR0056) + C3M3 * EXPR0062;
EXPR0071 = (1 - C4M1) * ((1 - C3M3) * ((1 - C3M2) * ((1 - C3M1) * EXPR0026 + C3M1 *
EXPR0027) + C3M2 * EXPR0025) + C3M3 * EXPR0028) + C4M1;

EXPR0072 = (1 - C4M1) * ((1 - C3M3) * ((1 - C3M2) * ((1 - C3M1) * EXPR0041 + C3M1 *
EXPR0042) + C3M2 * EXPR0040) + C3M3 * EXPR0043) + C4M1;

65 EXPR0074 = (1 - C4M1) * ((1 - C3M3) * ((1 - C3M2) * ((1 - C3M1) * EXPR0057 + C3M1 *
EXPR0058) + C3M2 * EXPR0056) + C3M3 * EXPR0059) + C4M1;

EXPR0066 = (1 - C4M3) * ((1 - C4M1) * ((1 - C3M3) * ((1 - C3M2) * ((1 - C3M1) *
EXPR0029 + C3M1 * EXPR0027) + C3M2 * EXPR0030) + C3M3 * EXPR0031) + C4M1) + C4M3;

EXPR0067 = (1 - C4M3) * ((1 - C4M1) * ((1 - C3M3) * ((1 - C3M2) * ((1 - C3M1) *
EXPR0044 + C3M1 * EXPR0042) + C3M2 * EXPR0045) + C3M3 * EXPR0046) + C4M1) + C4M3;

EXPR0069 = (1 - C4M3) * ((1 - C4M1) * ((1 - C3M3) * ((1 - C3M2) * ((1 - C3M1) *
EXPR0060 + C3M1 * EXPR0058) + C3M2 * EXPR0061) + C3M3 * EXPR0062) + C4M1) + C4M3;

EXPR0032 = (1 - C4M2) * ((1 - C4M3) * ((1 - C4M1) * ((1 - C3M3) * ((1 - C3M2) * ((1 -
C3M1) * ((1 - C3V3) * ((1 - C5V1) * ((1 - C5V2) * ((1 - C5V3) * ((1 - C4V1) * ((1 -
C4V2) * EXPR0004 + C4V2 * EXPR0005) + C4V1 * EXPR0006) + C5V3 * EXPR0007) + C5V2 *
EXPR0050) + C5V1 * EXPR0034) + C3V3 * ((1 - C5V1) * ((1 - C5V2) * EXPR0007 + C5V2) +
C5V1)) + C3M1 * EXPR0020) + C3M2 * EXPR0030) + C3M3 * EXPR0028) + C4M1 * EXPR0076) +
C4M3 * EXPR0071) + C4M2 * EXPR0066;

70 EXPR0047 = (1 - C4M2) * ((1 - C4M3) * ((1 - C4M1) * ((1 - C3M3) * ((1 - C3M2) * ((1 -
C3M1) * ((1 - C3V3) * EXPR0034 + C3V3) + C3M1 * EXPR0038) + C3M2 * EXPR0045) + C3M3 *
EXPR0043) + C4M1 * EXPR0077) + C4M3 * EXPR0072) + C4M2 * EXPR0067;

EXPR0063 = (1 - C4M2) * ((1 - C4M3) * ((1 - C4M1) * ((1 - C3M3) * ((1 - C3M2) * ((1 -
C3M1) * ((1 - C3V3) * ((1 - C5V1) * EXPR0050 + C5V1) + C3V3) + C3M1 * EXPR0054) +
C3M2 * EXPR0061) + C3M3 * EXPR0059) + C4M1 * EXPR0079) + C4M3 * EXPR0074) + C4M2 *
EXPR0069;

EXPR0033 = (1 - C5M1) * EXPR0032 + C5M1;
EXPR0048 = (1 - C5M1) * EXPR0047 + C5M1;
EXPR0064 = (1 - C5M1) * EXPR0063 + C5M1;

75 EXPR0068 = (1 - C5M3) * ((1 - C5M1) * EXPR0067 + C5M1) + C5M3;
EXPR0049 = (1 - C5M2) * ((1 - C5M3) * EXPR0047 + C5M3 * EXPR0048) + C5M2 * ((1 - C5M3)

* EXPR0048 + C5M3);
EXPR0073 = (1 - C5M2) * ((1 - C5M1) * ((1 - C4M2) * EXPR0072 + C4M2) + C5M1) + C5M2;
EXPR0078 = (1 - C5M2) * ((1 - C5M3) * ((1 - C4M2) * ((1 - C4M3) * EXPR0077 + C4M3) +
C4M2) + C5M3) + C5M2;

EXPR0065 = (1 - C3V1) * ((1 - C6M1) * ((1 - C5M2) * ((1 - C5M3) * EXPR0063 + C5M3 *
EXPR0064) + C5M2 * ((1 - C5M3) * EXPR0064 + C5M3)) + C6M1) + C3V1;

80 EXPR0070 = (1 - C3V1) * ((1 - C6M1) * ((1 - C5M3) * ((1 - C5M1) * EXPR0069 + C5M1) +
C5M3) + C6M1) + C3V1;

81 EXPR0075 = (1 - C3V1) * ((1 - C6M1) * ((1 - C5M2) * ((1 - C5M1) * ((1 - C4M2) *
EXPR0074 + C4M2) + C5M1) + C5M2) + C6M1) + C3V1;

EXPR0080 = (1 - C3V1) * ((1 - C6M1) * ((1 - C5M2) * ((1 - C5M3) * ((1 - C4M2) * ((1 -
C4M3) * EXPR0079 + C4M3) + C4M2) + C5M3) + C5M2) + C6M1) + C3V1;

EXPR0081 = (1 - C2V1) * ((1 - C2V3) * ((1 - C2V2) * ((1 - C6M2) * ((1 - C3V2) * ((1 -
C3V1) * ((1 - C6M1) * ((1 - C5M2) * ((1 - C5M3) * EXPR0032 + C5M3 * EXPR0033) + C5M2
* ((1 - C5M3) * EXPR0033 + C5M3)) + C6M1 * EXPR0049) + C3V1 * EXPR0049) + C3V2 *
EXPR0065) + C6M2 * EXPR0065) + C2V2 * ((1 - C6M2) * ((1 - C3V2) * ((1 - C3V1) * ((1 -
C6M1) * ((1 - C5M3) * ((1 - C5M1) * EXPR0066 + C5M1) + C5M3) + C6M1 * EXPR0068) +

C3V1 * EXPR0068) + C3V2 * EXPR0070) + C6M2 * EXPR0070)) + C2V3 * ((1 - C2V2) * ((1 -
C6M2) * ((1 - C3V2) * ((1 - C3V1) * ((1 - C6M1) * ((1 - C5M2) * ((1 - C5M1) * ((1 -
C4M2) * EXPR0071 + C4M2) + C5M1) + C5M2) + C6M1 * EXPR0073) + C3V1 * EXPR0073) + C3V2
* EXPR0075) + C6M2 * EXPR0075) + C2V2)) + C2V1 * ((1 - C2V3) * ((1 - C2V2) * ((1 -

C6M2) * ((1 - C3V2) * ((1 - C3V1) * ((1 - C6M1) * ((1 - C5M2) * ((1 - C5M3) * ((1 -
C4M2) * ((1 - C4M3) * EXPR0076 + C4M3) + C4M2) + C5M3) + C5M2) + C6M1 * EXPR0078) +
C3V1 * EXPR0078) + C3V2 * EXPR0080) + C6M2 * EXPR0080) + C2V2) + C2V3);

EXPR0082 = (1 - C2M1) * EXPR0081 + C2M1;
85 prob = (1 - C2M2) * ((1 - C2M3) * EXPR0081 + C2M3 * EXPR0082) + C2M2 * ((1 - C2M3) *

EXPR0082 + C2M3);

Fig. 21. Reliability function of the architecture in Figure 3
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