
Model Checking at Scale: Automated
Air Traffic Control Design Space Exploration ?

Marco Gario1, Alessandro Cimatti1, Cristian Mattarei1, Stefano Tonetta1, and
Kristin Yvonne Rozier2

1 Fondazione Bruno Kessler, Trento, Italy,
{gario,cimatti,mattarei,tonettas}@fbk.eu

2 University of Cincinnati, Ohio, USA,
rozierky@uc.edu

Abstract. Many possible solutions, differing in the assumptions and
implementations of the components in use, are usually in competition
during early design stages. Deciding which solution to adopt requires
considering several trade-offs. Model checking represents a possible way
of comparing such designs, however, when the number of designs is large,
building and validating so many models may be intractable.
During our collaboration with NASA, we faced the challenge of consid-
ering a design space with more than 20,000 designs for the NextGen air
traffic control system. To deal with this problem, we introduce a com-
positional, modular, parameterized approach combining model checking
with contract-based design to automatically generate large numbers of
models from a possible set of components and their implementations.
Our approach is fully automated, enabling the generation and valida-
tion of all target designs. The 1,620 designs that were most relevant to
NASA were analyzed exhaustively. To deal with the massive amount of
data generated, we apply novel data-analysis techniques that enable a
rich comparison of the designs, including safety aspects. Our results were
validated by NASA system designers, and helped to identify novel as well
as known problematic configurations.

1 Introduction

When multiple system design configurations are possible, there is a need to map
the design space in order to understand the big picture, and be able to demon-
strate the impact of design choices, such as different combinations of potential
subcomponents with different features, on the overall functionality and safety of
the system. Safety assessment of complex and critical systems can clearly benefit
from the use of formal methods techniques [28,34,24,20,27,29,15,30,14,22,31], but
a large space of possible designs presents major challenges for model-checking

? Thanks to the Flight Trajectory Dynamics and Controls Branch of NASA Ames
Research Center and NASA’s Functional Allocation Project for supporting this
work. All models and specifications are available at https://es-static.fbk.eu/

projects/nasa-aac/.

https://es-static.fbk.eu/projects/nasa-aac/
https://es-static.fbk.eu/projects/nasa-aac/

Design Space
Definition

System
Modeling Configuration Analysis Data Analysis

Proposal

Expert
Feedback

Architecture

Contracts

Implementation

Validation

Generation Validation Verification Fault Tree

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Generation Validation Verification Fault Tree

Query

Reliability

. . .

Fig. 1. Process Overview

analysis, including producing models of each design, cross-design validation, and
comparative safety analysis across the large design space. We address these chal-
lenges, exemplifying our methodology on NASA’s full-scale design space for
NextGen air traffic control, in which there are many ways to allocate essen-
tial functions such as aircraft separation assurance [26], and competing possible
implementations of the same components. The U.S. government made NASA
primarily responsible for the design and verification of NextGen air traffic con-
trol [3,2]. The new air traffic management system is expected to be in place
for decades to come [5] so we must evaluate the design space thoroughly to
ensure that we guarantee safety while allowing optimization for important sec-
ondary considerations. The importance of early-design stage optimization carries
to many classes of critical or long-lived projects, including commercial aircraft
and space missions, where the need to change the design later in the system
development process would be extremely difficult, and very costly.

In this paper, we discuss the application of model-checking-based techniques
to support the exploration of the NextGen design space. This is one of six studies
funded within NASA’s Functional Allocation Project and will contribute directly
to the final system design. We define a compositional, parameterized modeling
framework that can generate more than 20,000 possible designs. In collaboration
with NASA Ames and NASA Langley experts, we focus in on the 1,620 that they
identified as the most instructive configurations for a comparative analysis. The
outcome of this analysis provides significant insights into the features of the
various configurations. In order to tackle the huge design space, we develop a
new process that relies on multiple tools. The activities, depicted in Figure 1, can
be summarized in four main phases: Design Space Definition, System Modeling,
Configuration Analysis, and Data Analysis.

Design Space Definition. The stage was set by working with NASA in order to
identify precisely (yet informally [26]) the situations of interest, and by defining
the modeling dimensions to capture them.

System Modeling. Modeling each solution independently would be too time-
consuming (if not outright unfeasible). Plus each model needs to be properly
validated to ensure that it upholds the expected properties. Furthermore, inde-
pendent models would require a lot of maintenance effort to propagate changes
and ensure that they are all aligned with NASA’s most current designs. We can
manage these sources of complexity by combining several ingredients. First, we

use an architectural language (i.e., OCRA [17]) to separate the system architec-
ture from the implementation of the single components (obtained as SMV [16]
models). This allows us to model each component in isolation, partitioning the
effort, and minimizing the time required to validate changes in any component.
Additionally, this permits changes to the implementation of a single component
without impacting the rest of the system. Second, we use contracts (encoded
in OCRA as LTL formulas) to characterize each component. This allows us to
properly specify the interactions between components, and decompose the val-
idation properties into more localized subcomponent properties. Third, we use
parameters to factor out multiple configurations into a single (although more
complex) model. If two configurations require only marginal changes to an im-
plementation, we capture these changes using parameters within the models.
These techniques allow us to automatically generate a formal representation for
each configuration in the design space, with great confidence in their correctness
and alignment.

Configuration Analysis. We verify each model against the properties of inter-
est; in addition, techniques for safety assessment identify which combinations of
faults lead to the violation of fundamental properties. The corresponding Fault
Trees are automatically computed (using xSAP [10]), thus providing additional
information on the reliability of each configuration. We instantiate and analyze
each configuration independently, exploiting the typical parallelism of modern
computing infrastructures, thus significantly speeding up the analysis.

Data Analysis. Such analysis results in a significant amount of data, and poses
the problem of how to analyze it. We combine this data into a symbolically
represented dataset, linking each configuration to its satisfied properties and
Fault Trees. This dataset is particularly useful in such an exploratory phase, since
it describes the whole design space and can be studied offline. For example, by
automatically extracting sets of configurations enjoying specific properties (e.g.,
absence of single points of failure), it is possible to achieve a better understanding
of the design space. Our focused analysis of NASA’s air traffic control design
space confirmed expected results [25,23] as well as identifying novel ones. In
particular, we highlighted the need for additional assumptions when dealing with
changes in delegation of separation assurance from an aircraft to the ground, e.g.,
in case of a request for backup.

The contribution of this paper is twofold. First, we develop a complex and
realistic case study of public relevance, and make models, tools, and results
publicly available for future investigation (at [4]). This is no ordinary case study,
and to be able to handle the massive size, we need to exploit a novel process that
is our second contribution. Our process is able to scale to address a large design
space exploration problem. The process builds on existing tools and techniques
and adds a novel data analysis phase that is necessary to obtain insights from
the large amount of generated artifacts. We show that this technology is mature
and able to assist designers in formalizing and narrowing down design choices in
an early phase of system design.

The rest of the paper is structured according to the process described above
(Figure 1). Sections 2 to 5 illustrate each phase of the process in greater detail.
Related works are discussed in Section 6, and Section 7 concludes with possible
directions for future work.

2 Design Space Definition

The main objective of an air traffic control system is to avoid aircraft collisions.
In air traffic management, a Loss of Separation (LOS) between two aircraft oc-
curs when they are predicted to pass too close to each other. One of the major
goals of the next generation of air traffic control is to minimize the number
of times that a LOS ever occurs. This task is called Separation Assurance. In
this case study, we are interested in studying the separation assurance provided
by different designs when splitting the functionality between components on-
board airplanes and on-ground. In particular, aircraft that always rely on the
ground for separation assurance are called Ground Separated (GSEP), while air-
craft with on-board separation assurance capabilities are called Self-Separating
(SSEP). The main distinction between the two types of aircraft is the ability of
SSEP to perform self-separation, without the need of contacting the ground. The
goal of distributing the responsibility for separation assurance across different
components is to increase efficiency and improve fault tolerance.

Our work started by considering several proposals from NASA’s Flight Dy-
namics, Trajectory, and Controls Branch for different solutions regarding Func-
tion Allocation for Separation Assurance [26]. These ideas were the result of
considering several features and characteristics in a preliminary phase.

Our first step was to identify and formalize the dimensions shared by different
proposals, and this allowed us to define the design space. In order to model the
airspace and its dynamics, we track each aircraft’s intended trajectory through
four different time-windows: Current, Near, Mid, and Far. These indicate increas-
ingly distant points in time. For each window, we encode the intended position
of the aircraft. However, since we are only interested in whether two aircraft
can potentially be in a conflict, we simplify this information. For a given time-
window, we say that two aircraft are in the same Conflict Area (CA) iff their
trajectories are too close to each other and would cause a Loss of Separation.
We say that two aircraft are in LOS iff they are in the same conflict area in the
Current time-window. If two aircraft are in the same CA in another window,
we say that they have a predicted LOS. These abstractions make it possible to
focus on the other modeling dimensions: what information the different agents
share, how they behave in case of predicted LOS, and the impacts of the actions
of each agent on the overall system. Contrary to previous works (e.g., [28]), we
consider more complex interactions between separation agents, components with
multiple implementations, and priorities in case of predicted LOS. We derived
six modeling dimensions that enable us to capture these different trade-offs:

1. SSEP Separation Agent
2. Aircraft Mix

3. Information Sharing
4. Burdening Rules
5. Communication Steps
6. ACDR Implementations

SSEP Separation Agent. A key difference between the solutions is who is respon-
sible for performing separation for the SSEPs. We split this task into separation
for the Tactical (Near- and Mid-) and Strategic (Far-) windows. For each of
these windows we define who is in charge of separating the SSEPs: the ground
(ATC), the aircraft (SELF), or the aircraft with possible delegation to ground
(SATC). If the ground ATC is in charge of separating the SSEPs, then it com-
putes the resolutions and sends them to the aircraft. If the aircraft is in charge of
its own separation, computation of a resolution strategy happens on-board, pos-
sibly involving coordination between aircraft. The third case (SATC) captures
the possibility for an SSEP to delegate its own separation to the ground. This is
used to capture different situations such as backup in case of a fault, privileged
traffic corridors, and transfer of responsibility in designated airspace regions. In
the future, we expect other cases to be studied. For example, resolutions might
be computed on-board but require approval from ground.
Aircraft Mix. We consider situations in which all aircraft are of the same type,
and also where mixed types coexist. The same design can be analyzed without
SSEPs, with an even number of GSEPs and SSEPs, without GSEPs, or any
option in-between. Each combination is indicated by the number of GSEPs and
SSEPs, i.e., 〈#GSEP,#SSEP 〉.
Burdening Rules A priority must be defined in order to address detected conflicts
between aircraft of different types. Burdening rules define who should move when
such a conflict occurs: 1) Undefined, 2) GSEP, 3) SSEP. For example, if the
burden is on the GSEP, then the conflict should be resolved by changing the
trajectory of the GSEP. If the burdening rules are undefined, then each agent
will arbitrarily choose a burdened strategy, and consistently apply it to every
conflict.
Information Sharing. It is important to consider the minimization of required
communications, in order to reduce reaction times and system complexity. There-
fore, we need to understand what is the minimum amount of intent that aircraft
need to share. We make two main distinctions: information sharing from GSEPs
to SSEPs and from SSEPs to ATC. For each of these two information sharing
pipelines, we consider scenarios from sharing no information (None) to sharing
information concerning just the Current-window, up to the Near -window, up to
the Mid -window, or all the windows (Far -window).
Communication Steps. In some situations, multiple communication rounds might
be needed in order to reach an agreement among the parties. However, delays in
communication and availability of the networks make it necessary to minimize
the number of communication rounds that need to occur.
ACDR Implementations We considered different implementations for the Air-
borne Conflict Detection and Resolution (ACDR) component. The simplest im-
plementation of the ACDR computes a resolution without considering the be-

Table 1. Summary of possible and considered design dimensions

Name
Possible Considered

Values Size Values Size

SSEP TS SA ATC, SELF, SATC 3 ATC, SELF, SATC 3

SSEP SS SA ATC, SELF, SATC 3 ATC, SELF, SATC 3

Aircraft Mix 〈4, 0〉, 〈3, 1〉, 〈2, 2〉, 〈1, 3〉, 〈0, 4〉 5 〈4, 0〉, 〈3, 1〉, 〈2, 2〉, 〈1, 3〉, 〈0, 4〉 5

Burdening Rules Undef, GSEP, SSEP 3 Undef, GSEP, SSEP 3

GSEPs to SSEPs Info None, Current, Near, Mid, Far 5 Current, Far 2

SSEPs to ATC Info None, Current, Near, Mid, Far 5 Far 1

Com Steps 1, 2, . . . 2 1, 2 2

ACDR Implementations Simple, Asymmetric, Non-Receptive 3 Simple, Asymmetric, Non-Receptive 3

TOTAL 20,250 1,620

havior of the other aircraft (“ACDR Simple”). A more complex implementation,
instead, takes into account how the other SSEPs are going to resolve the con-
flict, and uses this knowledge to compute a resolution that is guaranteed to
solve the current conflict (“ACDR Asymmetric”). Finally, the last implementa-
tion (called “ACDR Non-Receptive”) is the one in which we declaratively enforce
the assumption that conflicts among SSEPs will be resolved without specifying
how, thus constraining the environment with a non-receptive specification [6];
this last option is useful to study the system behavior assuming a perfect ACDR.

Table 1 shows the possible dimensions defined during the first analysis, and
yields a design space with 20,250 configurations. Though we can scale to au-
tomatically generate and analyze this many models, further discussions with
NASA domain experts led us to focus our exhaustive analysis on the subset of
1,620 configurations most interesting from the domain point of view. In particu-
lar, they decided to fix the information sharing of the SSEPs in order to provide
all information (i.e., Far) and consider only the two extreme cases for the infor-
mation shared by the GSEPs: Current and Far. This reduced the design space to
a set of 1,620 configurations (right part of Table 1). These are the configurations
analyzed in the rest of the paper.

3 System Modeling

ADS-B Net

AC 1 AC 2 AC 3 AC 4

Communication Layer

ATC

Fig. 2. Model Architecture

The dimensions described in Table 1 are cap-
tured by defining a unified structure includ-
ing all possible configurations. This structure is
equipped with parameters and multiple imple-
mentations of the components, making it possi-
ble to model the whole system once, and then
automatically generate any of the 1,620 possible
instances. This reduces the modeling effort that
is, in terms of resources, the most expensive part
of the process. However, we need to pay particular attention to the validation of
the instantiated models, in order to make sure that all expected behaviors are
properly captured.

The general structure of the model is shown in Figure 2, and includes four
aircraft, the ATC, and two different types of networks: ADS-B and Communi-
cation Layer. ADS-B is used only among the aircraft, while the Communication

Layer is used between the aircraft and the ATC. This choice makes it simple to
provide different characteristics to the two networks: faults, symmetry, amount
of information, delays, etc. We always consider up to four aircraft instances. This
is sufficient to capture all combinations of conflicts between aircraft of different
types: GSEP-to-SSEP, GSEP-to-GSEP, SSEP-to-SSEP. This abstraction only
represents how many aircraft can be in a single conflict at the same time, and
does not assume anything about the size of the airspace [34].

Figure 3 shows the decomposition of the system into a hierarchy of component
types, and this provides an architecture that can be incrementally refined. For
example, we break down the definition of the Aircraft and ATC components into
subcomponents, and this compositional approach allows us to simplify modeling
and validation.

System

Aircraft ATC ADS-B Network
Communication

Layer

Airborne CDR
(ACDR)

ADS-B In

Pilot

Ground CDR
(GCDR)

Operator

Route Manager

Protocol Policy

Legend

Composite: OSS

Leaf: OSS + SMV

Fig. 3. Hierarchical decomposition

We use the Aircraft component (the most complex component) to exemplify
our parametric modeling approach. There are two types of aircraft: SSEP and
GSEP. Since these two types differ only in few ways, they are modeled as a
generic aircraft component whose behavior is selected via a set of parameters, as
listed in Table 2. More specifically, we model the Aircraft component as having
the following parameters: adsb_in, ts_agent, ss_agent, and burdening. The
parameters ts_agent and ss_agent are used to specify who is in charge of the
Tactical Separation (TS) (i.e., Near- and Mid-window) and Strategic Separa-
tion (SS) (i.e., Far-window). Similarly, the parameters burdening and adsb_in

capture, respectively, the information about the burdening rule in use and the
availability of the ADS-B receiver. Using this parametric model, we can describe
a GSEP as an aircraft that is always separated by ground, and that does not
have an ADS-B In component:

Aircraft(adsb_in=No, ts_agent=ATC, ss_agent=ATC, burdening=GSEP).

The impact of parameter choice is localized to the parameterized subcomponent.
For example, the burdening parameter has an impact only on the ACDR compo-

Table 2. Parameters, Inputs and Outputs of the Aircraft model

Type Name Domain

Parameter

id [1..4]
adsb in Boolean
ts sa agent {ATC, SELF, SATC}
ss sa agent {ATC, SELF, SATC}
burdening {Undefined, GSEP, SSEP}

Input

suggestion {near,mid,far} ground Conflict Area [0..4]
communication phase Boolean
ac {1,2,3,4} intention {current,near,mid,far} Conflict Area [0..4]
ac {1,2,3,4} {ts,sa} agent {ATC, SELF, SATC}

Output
intention {current,near,mid,far} Conflict Area [0..4]
predicted conflict {near,mid,far} Boolean
request {ts,ss} sa ground Boolean

nent. Having components whose implementations are independent of the model’s
parameters makes it possible to re-use these components for multiple configura-
tions. We also use a similar approach for modeling faults in the communication
networks, and we localize all of those faults within the network components:
ADS-B Network and Communication Layer. As shown in Figure 3, there are
two different components that are used to capture the ADS-B functionality: the
ADS-B Network and the ADS-B In component. By separating these (concep-
tually related) components, we are able to model the aircraft independently of
the faults, and number of aircraft connected to the network. Table 2 provides
a summary of the input and output information, and of the parameters for the
Aircraft component. In each configuration, we enforce that all GSEPs must have
the same parameters, and this applies also for the SSEPs. Therefore, in the same
configuration there cannot be two SSEPs with, e.g., two different separation as-
surance agents. This is not a limitation of the model or tools, but a design choice
motivated by the domain that we are exploring and our choice to keep the model
more understandable and limit the scope to realistic scenarios.

The architecture shown in Figures 2 and 3 is captured using the OCRA lan-
guage [17]. Breaking components (e.g., Aircraft) into simpler components simpli-
fies both modeling and validation. In particular, we can write properties about
the Aircraft and then decompose them into properties of the subcomponents.
This pattern is called Contract-Based Design, and it is supported by OCRA us-
ing contracts expressed in Linear Temporal Logic (LTL). For example, we write
a contract for the Aircraft (Figure 4) and decompose it into contracts on its
subcomponents (see REFINEDBY in the Figure). To take advantage of contract-
based design we need to perform two steps [18]. First, we need to check that the
refinement of the contract is correct. This means that the guarantees provided
by the subcomponents in the refinement are sufficient to prove the guarantee of
the supercomponent. After performing this step, we know that independently of
the choice of parameters, if the implementations of the ACDR and Pilot satisfy

CONTRACT AC_maintain_intention_ts_self
-- If self -separating , during communication phase if no conflict
-- is predicted , the intention will not change.
-- Tactical Separation Case.
assume: TRUE;
guarantee: always ((communication_phase and ts_sa_agent = SA_SELF) implies

((not predicted_conflict_near implies
next(intention_near) = intention_near) and

(not predicted_conflict_mid implies
next(intention_mid) = intention_mid)));

CONTRACT AC_maintain_intention_ts_self
REFINEDBY cdr.ACDR_no_conflict_means_maintain_near ,

cdr.ACDR_no_conflict_means_maintain_mid ,
pilot.Pilot_apply_ts_self ,
pilot.Pilot_intention_is_not_nop;

Fig. 4. Example of a contract on the Aircraft component

their contracts, then also the Aircraft satisfies its contract. As a second step, we
verify that the implementations of each component satisfy their contracts. This
operation is done locally on the component in isolation and, since most compo-
nents are relatively small, it can be performed efficiently. Every time we modify
a basic component, we only need to validate it against its contracts, and we are
guaranteed that the composite components will still satisfy their contracts. This
way of using contracts significantly speeds up the design loop. To draw a parallel
with software engineering, the contracts that we write are comparable to unit
tests in which we focus on the correctness of the component in isolation.

An added benefit of this process of contract decomposition is that it requires
a rigorous understanding of the relationships between the components. This
raises interesting questions about how to define the components, how to divide
responsibilities, and what behavior can be expected by every component in nom-
inal situations. In fact, we are forced to define requirements that all component
implementations must satisfy. In our case, this investigation was supported by a
close collaboration with NASA, which resulted for example, in the definition of
multiple possible ACDR implementations, and the definition of more than 130
contracts.

4 Configuration Analysis

Once the unified model is complete, we proceed to analyze each possible con-
figuration in isolation. For each configuration we break the analysis into the
following steps:

1. Instance Generation
2. Airspace, Nominal, and Extended Validation
3. Nominal and Extended Verification
4. Fault Tree and Reliability Analysis

Automation of this phase is very important. Each step is run automatically, from
the definition of the instance to the generation of all verification and Fault Tree
artifacts. This ensures that the process is reproducible and scalable.

Instance Generation Each leaf component in our hierarchical architecture is
associated with an implementation (a behavioral model defined as an SMV file)
by defining a map file. The OCRA tool uses this mapping to generate a single
monolithic SMV file of the instance. This makes it extremely easy to instantiate
the system with multiple functional implementations of the components, and
also to create instances with and without faults. We pass parameters through
the OCRA architecture using pre-processing instructions to define constants. In
this way, the variability of the model is limited to the OCRA architecture and
map files used during the generation phase. The outcomes of this phase are three
models: airspace, nominal, and extended. These are standard SMV files, without
parameters, that can be analyzed by any out-of-the-box technique.

Airspace, Nominal, and Extended Validation The models for the configuration
are generated automatically, therefore, before proceeding to the verification step,
we need to gain confidence in the quality of the generated models. For this reason,
we perform these additional validation steps.

The airspace model captures the system without separation assurance agents.
This is the first validation check: the model must allow the occurrence and
resolution of LOS. We generated this model by mapping the separation agents to
implementations that have no constraints, while using nominal implementations
for the aircraft and networks. To certify that the components work correctly
together, we verify 18 CTL properties encoding the possibilities of bad and good
behaviors, and 24 LTL properties derived from contracts.

The nominal model uses a nominal implementation for every component,
including separation agents. Unlike the extended model, in this case we do not
allow components to fail. We validate this model with 29 LTL properties derived
from the contracts of the components.

Finally, the extended model uses an implementation for every component
that includes faults (95 faults in total, as described in [28]). The validation of the
extended model checks that all faults are possible (through 137 CTL possibility
properties), and that they respect their dynamics, i.e., permanent or transient,
with 29 LTL properties.

Overall, the validation of the 3 models requires a combination of different
techniques in order to be effective and be carried out in a limited time. The
CTL verification requires a fixpoint-based approach, using BDDs, while for the
LTL properties, we use the IC3-based algorithms implemented in nuXmv [16].
Every property is checked against a known result that, if violated, causes the
analysis to stop for further investigation.

Nominal and Extended Verification In this step, we characterize different config-
urations by verifying additional properties. The most important is whether LOS
can always be avoided (NO-LOS), followed by stronger versions: NO-LOS-Near,
-Mid, -Far. Other properties provide additional information on the quality of
the configuration, e.g., Detect-Near “Every conflict in the Near-window (Mid-,
Far- respectively) is detected by at least one Agent.” This property is satisfied
if the ATC (which is an Agent, in this context) detects a conflict between two

aircraft, without either of the aircraft detecting it. It is clear that we can devise
stronger versions of this property, and apply it to different time-windows (e.g,
Detect-Mid, -Far). This provides a simple way of ranking configurations accord-
ing to how many and which properties they satisfy. During extended verification,
we check instead whether these properties are still satisfied in the presence of
faults. For most properties this will not be the case. However, if some property is
satisfied even with faults, it means that the property and the faults have no re-
lation in the given configuration. In this step, we verify 24 LTL and 30 invariant
properties on both the nominal and extended models.

Fault Tree and Reliability Analysis We compute the Fault Tree associated with
each safety property in order to understand the resilience of each configura-
tion in the presence of faults. Fault Trees are a standard in safety-critical do-
mains [32,7,8]. More specifically, we compute the set of minimal cutsets, i.e.,
all possible faults configurations (called cutsets) that can cause the violation
of the given property. These cutsets are minimal because they only include the
faults that are necessary to violate the property. Minimal cutsets are computed
automatically from the formal model, using the IC3-based technique described
in [11] and implemented in xSAP [10]. For each Fault Tree, we also generate
a reliability function [12]. This function relates the probability of violating the
property to the probability of occurrence of each basic fault.

5 Data Analysis

Each configuration can be analyzed independently. We exploit this fact and run
the analysis on a cluster with 12 Intel Xeon X5650 processors (72 cores). The
average size of the models was 10107 states, and each model was checked against
346 properties. The two most difficult steps were those of model validation, due
to the need for BDD-based reasoning, and minimal cutset computation, since it
requires solving a parameter synthesis problem. These two steps were completed
within an hour for most configurations, but for roughly 10% of the models, they
required several hours to complete. Verification of the LTL properties was per-
formed using the nuXmv [16] IC3 implementation, requiring roughly 5 minutes
per model.

Once all results are available, we can perform the last step of the process: Data
Analysis. Each configuration provides us with a set of verification results and a
set of Fault Trees. Therefore, we face the challenge of how to intuitively represent
the information provided by more than 1,600 Fault Trees and verification results.
We approached the problem by collecting these artifacts into relations. The first,
V ⊆ C × Bn, relates each configuration (i.e., a set of values for the parameters)
to the satisfaction of the verification properties. The second, FT ⊆ C × N ×
2MCS instead relates each configuration and property index to the set of minimal
cutsets (MCS) associated with it. This data can be queried and manipulated
offline, by the domain experts, in order to obtain more insights into the design
space.

5.1 Summary of Results

Most of the configurations (Table 3) satisfy the key property of avoiding Loss
of Separation (NO-LOS). The fact that NO-LOS-Far is satisfied by some SSEP-
Only configurations is due to the non-receptive implementation of the ACDR,
which assumes that trajectories are computed in a way that avoids potential
conflicts in the Far-window. However, not all configurations using the SSEP-
Only ACDR are immune to LOS. For example, when including burdening rules,
GSEPs (that do not use the ACDR) can interfere with the SSEPs and lead to a
LOS.

Table 3. Models satisfying NO-LOS for different windows

GSEP-Only Mixed Mixed Mixed SSEP-Only Total
4-0 3-1 2-2 1-3 0-4

NO-LOS 324 244 212 213 258 1251
NO-LOS-Near 324 244 209 210 252 1239
NO-LOS-Mid 324 192 138 141 198 993
NO-LOS-Far 0 0 0 18 84 102

Prime Implicants To extract interesting facts from the verification results, we
synthesize the region of parameters that satisfy a property of interest. To com-
pute the region of parameters that satisfy a property, we fix the property value
and quantify away the other properties in the relation V . E.g., for NO-LOS:

NO LOS(C) = ∃P1, · · · , Pn. V (C,P1, · · · , Pn) ∧ PNO LOS

where Pi is a Boolean variable associated with the verification result for property
i, and C is the set of configuration variables (i.e., parameters). In this way,
we can compute the region of parameters associated with the satisfaction of
each property. Very few of these regions have a compact representation. To
extract interesting facts from these regions, we compute the prime implicants
of the region, i.e., the set of minimal elements that are sufficient to enforce the
satisfaction of the property. For cardinality 1, we obtain the following implicant
for NO-LOS:

(MIX = 〈4, 0〉) ∨ (SSEP TS SA = ATC) ∨ (SSEP SS SA = ATC)

This tells us that there are three ways to guarantee NO-LOS: (i) having only
GSEP airplanes, or having the ATC in control of the (ii) Strategic or (iii) Tactical
separation of any SSEP.

By checking that NO-LOS-Far is achieved only by configurations using non-
receptive ACDR, we verified the corresponding claim from Table 3. Moreover,
we verified that not all configurations using non-receptive ACDR can satisfy
NO-LOS-Far, thus discovering a necessary but not sufficient condition. These
analyses were performed using pySMT [21] in order to represent the data using
BDDs [13] for efficient querying.

Fig. 5. Impact of the communication faults on LOS probability.

Reliability Functions Analyzing the reliability functions obtained from the fault
trees, we can synthesize the region of configurations that have a probability of
violating a property below a given threshold. This result provides us different
sets of candidates that are able to guarantee a high reliability. In addition to
that, we want also to analyze the impact of a variation in the probability of
failure of different groups of components. In Figure 5 we demonstrate this last
analysis by proceeding as follows. First, we partition the faults into three groups:
the ones related to the Communication Layer, the ADS-B, and all the others.
For each configuration and each value of the probability of the faults of the
Communication Network (y axis) and of the ADS-B Network (x axis), we com-
pute the probability of reaching a LOS, by considering all other faults to have
a fixed probability of 10−8 (Basic Probability). In Figure 5, we summarize this
information by plotting how many configurations have a probability of leading
to a LOS that is below the threshold of 10−4 for the given probability of the
faults. Interestingly, we see that reducing the reliability of the Communication

Layer has a bigger impact than reducing the reliability of the ADS-B network.
We see this because when the probability of faults in the ADS-B is high (x axis
close to -2), but the probability of fault of the communication layer is low (y axis
close to -8), the probability of reaching a LOS is below the threshold of 10−4

for more than 800 configurations. If we look at the opposite situation, instead,
we see that less than 100 configurations have a probability of reaching LOS that
is below the threshold. The insight that we gain from this is that many of the
analyzed configurations are robust with respect to failures of the ADS-B.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80

C

on
fig

ur
at

io
ns

Top X Faults

Fig. 6. Configurations impacted by the top N single points of failure.

A different analysis is presented in Figure 6 in which we analyze how many
configurations share the same top N single points of failure. A single point of
failure is a single fault that is sufficient to (in our case) cause a LOS, and corre-
sponds to a minimal cutset of cardinality one. There are roughly 10 single points
of failure that are shared by more than a thousand configurations. However, we
also notice that most faults are single points of failure for a limited number of
configurations; recall that there are 95 faults in total. If the probability of those
10 faults is very high, then we can significantly prune the design space, and focus
only on the configurations that are not affected by those faults.

5.2 Interesting Executions

A selection of the most relevant results was discussed with the domain experts.
In particular, we were able to independently reproduce two known issues, side-
walk [33,25] and coincidental conflicts [23], and discover a new one.

Side-walk Conflict. Side-walk conflicts occur whenever we use the “simple”
implementation of the ACDR, in which conflicts between SSEPs are resolved

by choosing a free conflict area. The problem occurs when more than one SSEP
decides to move to the same conflict area. Due to the symmetry of the resolution
algorithm, this strategy is not guaranteed to resolve the conflict. To break this
symmetry, we developed the asymmetric version of the ACDR.

Coincidental Conflict. The asymmetric ACDR is not able to resolve conflicts
early. In particular, we would like to always satisfy NO-LOS-Mid, i.e., avoid
predicted LOS in the Mid-window. This is not possible if we allow only one
communication step. In fact, if four aircraft are in two different conflicts that
are resolved correctly, they might still end up in a new conflict. Consider the two
conflict sets: {AC1, AC2} and {AC3, AC4}. AC1 and AC3 decide to move to
solve their respective conflicts. However, they choose to move to the same conflict
area. An additional round of communication is needed in order to resolve this
conflict, and this generalizes to needing at most log(n) communication steps
when considering n aircraft.

Backup From Ground. The novel problematic configuration that we identi-
fied stems from limited requirements on the behavior of the backup operation,
i.e., when an SSEP is able to request backup from ground and it delegates its
separation to the ATC (SATC). This turned out to require more assumptions
than were initially considered. In fact, when enabling this behavior, all config-
urations violate NO-LOS, excluding the ones with non-receptive ACDR. This
is motivated (as shown by the counterexamples) by a lack of information and
a mismatch of expectations in the airspace. In particular, in the design used in
this project, whenever an aircraft requests ATC assistance, the other aircraft are
not aware of it. Therefore, all of the other SSEPs expect the aircraft to maintain
its behavior as an SSEP. In order to solve this issue, we propose two options.
First, requests for ground-assistance are relayed to other aircraft. Second, the al-
gorithm for separation used by ATC needs to take into account that the aircraft
was an SSEP, and therefore compute a resolution taking into account what the
other SSEPs expect the aircraft to do. These extensions are left as future work.

6 Related Work

Before NASA turned to the question of what designs were best for automated
air traffic control, it was necessary to explore what designs were possible. To that
end, NASA launched several initiatives to formally reason about a single such
system; two of these works, using symbolic model checking [34] and probabilistic
model checking [35] techniques led to the decision to use the former for the
problem of broader design space exploration. However, neither technique proved
sufficiently scalable to capture all of the relevant details of a single design at the
same time.

This paper presents a large advancement along the same line of research
of [28], in which a modeling abstraction for the problem was proposed, by de-
signing and verifying a monolithic model. This modeling abstraction proved to
be suitable for capturing the problem, however, it could not be scaled to cover
the entire design space. Therefore, in this work we devise a tailored process that

allows us to model, validate, verify, and compare the full design space (i.e. 20,000
designs and beyond) with exhaustive analysis of the more than 1,600 most likely
candidate designs. This was made possible by breaking down the modeling and
using a compositional approach based on contract-based design (as opposed to
the monolithic approach of [28]). The size of the design space not only created
challenges for running the analysis, but also for analyzing the results: we had
to consider new ways of looking at the considerable amount of data produced
in order to extract interesting information rather than providing NASA with a
firehose of data. Thanks to the extensive coverage of the design space enabled
by the process described in this paper, we managed to identify some configura-
tions that were of interest for NASA. The examples that we highlight show that
this approach pinpointed implicit assumptions and critical points in the design
process.

The term design space exploration is commonly used to describe the study of a
design space (mostly combinatorial) by avoiding the computation of all solutions
and optimizing with respect to some cost function. For example, Airbus [9] uses
automated techniques to evaluate design spaces, in which multiple solutions are
compared and sorted with respect to their weight. It is important to notice,
however, that we are dealing with a sequential problem while works such as [9]
deal with combinational ones. Moreover, the existence of a cost function allows
the optimization engine to prune “bad” configurations, thus reducing the actual
number of configurations that will be eventually checked. In our case, there is
no cost function defined; we are instead interested in a better understanding of
the design space, and thus want to be able to thoroughly analyze every possible
design. Therefore, we analyze all of the realistic configurations and collect the
data in a form suitable for subsequent comparison.

When we move from combinational to sequential problems, we find works
related to product lines, e.g., Software Product Lines [19], that deal with a sim-
ilar problem of verification of a parametric system. In [19] the authors propose
an extension to NuSMV that is able to perform symbolic model checking of an
extended version of CTL (feature-oriented CTL). The differences with our work
are several. From a process point of view, we focus not only on the verification
but also on the validation of the generated models and on safety assessment; the
outcome of our process is more informative since it relates the set of configura-
tions with the properties that are satisfied (i.e., parameter synthesis). Finally,
we integrate the modeling phase with a compositional approach that helps to
save significant modeling effort. In principle, we could try to combine multiple
configurations in order to analyze them together in a symbolic way. However,
this was not needed and, on the contrary, the ability to work on each configura-
tion independently made it possible to exploit high levels of parallelism provided
by modern computing infrastructures.

7 Conclusions and Future Work

In this paper, we presented and released a complex real-world case study demon-
strating the application of formal methods to the analysis of the big design space
associated with the NextGen Automated Air Traffic Control System under study
at NASA. Our approach resulted in a wealth of interesting data that supported
the re-discovery of known results, and also the identification of new insights.
When we started, NASA engineers had many possible design ideas, all described
informally. We helped them to formalize and clarify these ideas, and to make
explicit hidden assumptions. To the best of our knowledge, this is the first time
that a design space of this scale has been mapped out by considering every
possible solution in such depth.

The task of analyzing all the 1,620 designs would have been unfeasible with-
out the novel process that we introduce. Our process combines and builds upon
existing techniques and tools to perform model generation, validation, verifica-
tion, and safety assessment. The process relies on a compositional, parametric,
and contract-based approach in order to maximize reuse, and to ensure great
confidence in the models by means of aggressive model validation. Overall, our
study shows that this technology is mature and able to assist designers in for-
malizing and narrowing down design choices in an early phase of system design.

We extracted meaningful information from this data, and we expect that
even more will be extracted in the future, working in collaboration with the
NASA domain experts. In the future, we plan to extend the model by identifying
additional modeling dimensions of interest, e.g., the fact that ADS-B information
might not propagate equally to all aircraft, or the presence of multiple ATCs.
Finally, we plan to leverage more the contract-based infrastructure defined in this
work, in order to identify properties that can be proved by pure compositional
reasoning. We believe that this process can be applied to other design exploration
situations in which the size of the design space stems from the local variability
of the components. For example, we have started working with the World Bank
through Data Science for Social Good [1] to use an adaptation of the framework
presented in this paper to help them root out corruption, collusion, and fraud
by comparatively analyzing the temporal behaviors of their large network of
suppliers.

References

1. Eric & Wendy Schmidt Data Science for Social Good, University of Chicago, http:
//dssg.uchicago.edu/

2. Nasa airspace operations and safety program, http://www.aeronautics.nasa.

gov/programs-aosp.htm

3. Nasa nextgen-airspace, http://www.hq.nasa.gov/office/aero/asp/airspace/

4. Project webpage: Formal methods for automated airspace concepts, https://

es-static.fbk.eu/projects/nasa-aac

5. NextGen (May, 2016), https://www.faa.gov/nextgen/

http://dssg.uchicago.edu/
http://dssg.uchicago.edu/
http://www.aeronautics.nasa.gov/programs-aosp.htm
http://www.aeronautics.nasa.gov/programs-aosp.htm
http://www.hq.nasa.gov/office/aero/asp/airspace/
https://es-static.fbk.eu/projects/nasa-aac
https://es-static.fbk.eu/projects/nasa-aac
https://www.faa.gov/nextgen/

6. Abadi, M., Lamport, L.: Composing Specifications. ACM Transactions on Pro-
gramming Languages and Systems 15(1), 73–132 (1993)

7. ARP4754A Guidelines for Development of Civil Aircraft and Systems. SAE (Dec
2010)

8. ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment, SAE (Dec 1996)

9. Bauer, C., Lagadec, K., Bès, C., Mongeau, M.: Flight control system architecture
optimization for fly-by-wire airliners. Journal of guidance, control, and dynamics
30(4), 1023–1029 (2007)

10. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei,
C., Micheli, A., Zampedri, G.: The xSAP safety analysis platform. Proceedings of
22nd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) (2016)

11. Bozzano, M., Cimatti, A., Griggio, A., Mattarei, C.: Efficient Anytime Techniques
for Model-Based Safety Analysis. In: CAV (2015)

12. Bozzano, M., Cimatti, A., Mattarei, C.: Automated Analysis of Reliability Archi-
tectures. In: 18th International Conference on Engineering of Complex Computer
Systems (ICECCS). pp. 198–207. IEEE (july 2013)

13. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. Com-
puters, IEEE Transactions on 100(8), 677–691 (1986)

14. Butler, R.W., Hagen, G., Maddalon, J.M.: The Chorus conflict and loss of separa-
tion resolution algorithms. Tech. rep., Technical Memorandum NASA/TM-2013-
218030, NASA, Langley Research Center, Hampton VA 23681-2199, USA (2013)

15. Can, A.B., Bultan, T., Lindvall, M., Lux, B., Topp, S.: Eliminating synchronization
faults in air traffic control software via design for verification with concurrency
controllers. Automated Software Engineering 14(2), 129–178 (2007)

16. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic Model Checker. In: Biere,
A., Bloem, R. (eds.) Computer Aided Verification (CAV). Lecture Notes in Com-
puter Science, vol. 8559, pp. 334–342. Springer (2014)

17. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A Tool for Checking the Refinement
of Temporal Contracts. In: ASE. pp. 702–705. IEEE (2013)

18. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Science of Computer Programming 97, 333–348 (2015)

19. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking
of software product lines. In: Proceedings of the 33rd International Conference on
Software Engineering. pp. 321–330. ACM (2011)

20. von Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne colli-
sion avoidance system. In: Tools and Algorithms for the Construction and Analysis
of Systems, pp. 620–635. Springer (2014)

21. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT-Workshop (2015)

22. Hagen, G., Butler, R., Maddalon, J.: Stratway: a modular approach to strategic
conflict resolution. In: Preceedings of 11th AIAA Aviation Technology, Integration,
and Operations (ATIO) Conference, Virgina Beach, VA (2011)

23. Idris, H.R., Shen, N., Wing, D.J.: Improving separation assurance stability through
trajectory flexibility preservation. In: 10th AIAA Aviation Technology, Integration,
and Operations (ATIO) Conference. p. 9011 (2010)

24. Jeannin, J.B., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki,
E., Platzer, A.: A formally verified hybrid system for the next-generation airborne

collision avoidance system. In: Tools and Algorithms for the Construction and
Analysis of Systems, pp. 21–36. Springer (2015)

25. Karr, D.A., Vivona, R.A., Roscoe, D.A., DePascale, S.M., Wing, D.J.: Autonomous
Operations Planner: A Flexible Platform for Research in Flight-Deck Support for
Airborne Self-Separation. In: 12th AIAA Aviation Technology, Integration, and
Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference. p. 5417 (2012)

26. Lauderdale, T., Lewis, T., Prevot, T., Ballin, M., Aweiss, A., Guerreiro, N.: Func-
tion allocation for separation assurance: Research plan (Aug 2014), NASA HQ
Project Overview

27. Loos, S.M., Renshaw, D., Platzer, A.: Formal verification of distributed aircraft
controllers. In: Proceedings of the 16th International Conference on Hybrid Sys-
tems: Computation and Control. pp. 125–130. HSCC ’13, ACM, New York, NY,
USA (2013), http://doi.acm.org/10.1145/2461328.2461350

28. Mattarei, C., Cimatti, A., Gario, M., Tonetta, S., Kristin Yvonne, R.: Comparing
different functional allocations in automated air traffic control design. In: Formal
Methods in Computer-Aided Design (FMCAD15) (2015)

29. Mehlitz, P.: Trust your model-verifying aerospace system models with Java
PathFinder. IEEE/Aero (2008)

30. Munoz, C., Carreño, V., Dowek, G.: Formal analysis of the Operational Concept for
the Small Aircraft Transportation System. In: Rigorous Development of Complex
Fault-Tolerant Systems, pp. 306–325. Springer (2006)

31. Muñoz, C., Siminiceanu, R., Carreño, V., Dowek, G.: KB3D reference manual-
version 1. NASA (2005)

32. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. Tech.
Rep. NUREG-0492, Systems and Reliability Research Office of Nuclear Regulatory
Research U.S. (1981)

33. Wing, D.J., Ballin, M.G., Krishnamurthy, K.: Pilot in command: a feasibility
assessment of autonomous flight management operations. In: 24th International
Congress of the Aeronautical Sciences (2004)

34. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination
protocol for an automated air traffic control system. Science of Computer Pro-
gramming Journal 96(3), 337–353 (December 2014)

35. Zhao, Y., Rozier, K.Y.: Probabilistic model checking for comparative analysis of
automated air traffic control systems. In: Proceedings of the 33rd IEEE/ACM
International Conference On Computer-Aided Design (ICCAD 2014). pp. 690–695.
IEEE/ACM, San Jose, California, U.S.A. (November 2014)

http://doi.acm.org/10.1145/2461328.2461350

	Model Checking at Scale: Automated Air Traffic Control Design Space Exploration

