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Abstract. Safety Assessment (SA) is an engineering discipline aiming at the
analysis of systems under faults. According to industrial practice and standards,
SA is based on the construction of complex artifacts such as Fault Trees, which
describe how certain faults may cause some top-level events. SA is intended to
mirror the hierarchical design of the system focusing on the safety aspects.
In this paper, we propose a formal approach where the nominal specification of a
hierarchically decomposed system is automatically extended to encompass faults.
The approach is based on a contract-based design paradigm, where components
at different levels of abstraction are characterized in terms of the properties that
they have to guarantee and the assumptions that must be satisfied by their envi-
ronment. The framework has several distinguishing features. First, the extension
is fully automated, and requires no human intervention, based on the idea that
intermediate events are failures to fulfill the contracts. Second, it can be applied
stepwise, and provides feedback in the early phases of the design process. Finally,
it efficiently produces hierarchically organized fault trees.

1 Introduction

Complex systems are often the result of two complementary processes. On the one
side, hierarchical design refines a set of requirements into increasingly detailed levels,
decomposing a system into subsystems, down to basic components. On the other side,
the process of safety assessment (SA) analyzes the impact of faults. This process is
intended to pinpoint the consequences of faults (e.g., a valve failing to operate) on
high-level functions (e.g., loss of thrust to engines).

In architectural design, the failure of components is typically not modeled explicitly.
Failures are typically artificially introduced in the model for safety assessment. How-
ever, the design that is later implemented in real software and hardware components
contains only the nominal interfaces and behaviors. It may contain redundancy mech-
anism or failure monitoring, but not the failure themselves. We call such architectural
design the nominal architecture. Modeling and analysis of faults is the objective of SA.
Unfortunately, there is often a gap between the design of the nominal architecture and
SA, which are carried out by different teams, possibly on out-of-sync components. This
requires substantial effort, and it is often based on unclear semantics.

In this paper, we conceived a new formal methodology to support a tight integration
between the architectural design and the SA process. Our approach builds on two main
ingredients. First, we use Contract-Based Design (CBD) - a hierarchical technique that
provides formal support to the architectural decomposition of a system into subsystems
and subcomponents. Components at different levels of abstraction are characterized



by contracts (assumptions/guarantees). Remarkably, CBD can provide feedback in the
early stages of the process, by specifying blocks in abstract terms (e.g., in terms of
temporal logic [17]), without the need for a behavioral model (e.g., in terms of finite-
state machines). Second, we use the idea of fault injection (a.k.a. model extension),
which enables the transformation of a nominal model into one encompassing faults.
This is done by introducing additional variables controlling the activation of faults,
hence controlling whether the system is behaving according to the nominal or the faulty
specification. Within this setting, it is possible to automatically generate Fault Trees
(FTs) using model checking techniques. This approach focused in the past on behavioral
models [21,13], and is flat, i.e., it generates two-level FTs corresponding to the DNF of
their minimal cut sets (MCSs); as such, it is unable to exploit system hierarchy.

The novel contribution of our approach is the extension of CBD for SA (CBSA):
given a nominal contract-based system decomposition, we automatically obtain a de-
composition with fault injections. The insight is that the failure mode variables are
directly extracted from the structure of the nominal description, in that they model the
failure of a component to satisfy its contract. The approach is proved to preserve the
correctness of refinement: the extension of a correct refinement of nominal contracts
yields an extended model where the refinements are still correct. Once the contracts are
extended, it is possible to automatically construct FTs that mimic the structure of the
architecture, and formally characterize how lower-level or environmental failures may
cause failures at higher levels. This approach has several important features. First, it is
fully automated, since SA models are directly obtained from the design models, without
further human intervention. Second, it can be applied early in the development process
and stepwise along the refinement of the design, providing a tight connection between
design and SA. Third, it allows for the generation of artifacts that are fundamental in
SA, namely FTs that follow the hierarchical decomposition of the system architecture.

The framework has been implemented extending the OCRA tool [15], which sup-
ports CBD. We show experimentally that our approach is able to produce hierarchically
organized FTs automatically and efficiently. Furthermore, when applied to behavioral
descriptions, the partitioning provided by CBD demonstrates a much better scalability
than the monolithic approach provided by previous techniques for Model-Based Safety
Assessment (MBSA) [13], which generate flat FTs.

This paper is structured as follows. In Sect. 2, we discuss some related work. In
Sect. 3, we present the state of the practice in SA. In Sect. 4, we present some back-
ground on formal verification and CBD. In Sect. 5, we discuss contract-based fault
injection, and in Sect. 6, we discuss how to generate FTs. In Sect. 7, we present the
experimental evaluation. In Sect. 8, we conclude and discuss future work.

2 Related work

In recent years, there has been a growing industrial interest in MBSA, see e.g., [13].
These methods are based on a single safety model of a system. Formal verification
tools based on model checking have been extended to automate the generation of arti-
facts such as FTs and FMEA tables [13,12,9,11,10], and used for certification of safety
critical systems, see e.g., the Cecilia OCAS platform by Dassault Aviation. However,
the scope of such methods is limited to the generation of the MCSs, represented as a
two-level FT. This limitation has an impact in terms of scalability, and readability of



the FTs. Our approach overcomes the previous limitations – both in terms of scalability
(compare Section 7) and significance of the generated FTs (we produce hierarchically
organized FTs, as per [2]). Moreover, as a difference with traditional MBSA, we follow
a fully top-down development approach, which closely resembles the SA process as
described, e.g., in [2], providing feedback in much earlier stages of the design.

An alternative approach for the generation of more structured FTs is based on
actors-oriented design [23,20], however these techniques do not account for a stepwise
refinement of SA, as outlined in [2]. Specifically, even in presence of minor changes,
this approach does not provide the possibility to refine, extend or reuse previous FTA.

Our work is similar in spirit to [5], which presents a methodology based on re-
trenchment (an extension of classical refinement), to generate hierarchical FTs from
systems represented as circuits, exploiting the system dataflow. A major difference is
that retrenchment does not focus on top-down development, but rather on the relation
between nominal and faulty behaviors. It takes as input the system hierarchy and the be-
havioral models, hence it does not support the FT generation along the stepwise refine-
ment. Moreover, the framework is theoretical and, although an algorithm for generation
of FTs is provided, implementation issues for its realization are not discussed.

In [6], contracts are (manually) generated after a safety and design process. The FT
is manually constructed starting from some diagrams describing the system behavior.
State machines are extended with faulty behavior to analyze the hazards. Differently
from our work, FTA and hazards analysis are used to collect information to specify the
contracts. We instead start from the contracts to derive automatically the FT.

In this paper, we based the fault-tree generation on the contract-based refinement.
There are other more mature refinement techniques such as the B Method [4], but we
are not aware of approaches to FT generation based on these refinements.

3 Safety Assessment: State of the Practice

Safety assessment is an integral part of the system development of complex systems.
As an example, [1] describes the typical development process for civil aircraft as be-
ing constituted of different activities, including: a conceptual design, whereby intended
aircraft functions are identified; the system architecture design, which is responsible
for designing the architecture down to the item level, and allocating aircraft functions
to the appropriate items; the allocation of system requirements to items; finally, the
implementation of individual items (in software and/or in hardware) and the items/sys-
tem integration activity. In practice, development may involve multiple iterative cycles,
whereby the system architecture and allocated requirements are progressively refined.

In this context, safety assessment has the goal to show that the implemented system
meets the identified safety requirements and complies with certification requirements.
Safety assessment is strictly intertwined with, and carried out across all phases of de-
velopment. For example, [2] distinguishes a preliminary aircraft- or system-level safety
assessment (PASA/PSSA), which aims at validating the proposed architecture in terms
of safety and allocating safety requirements to items, and an aircraft- or system-level
safety assessment (ASA/SSA), which systematically evaluates the implemented aircraft
and systems in order to show that they meet the safety requirements.

Fault Tree Analysis (FTA) [2,25] is a traditional safety assessment method, which
can be applied across different phases. It is as a deductive technique, whereby an un-
desired state (the so called top level event) is specified, and the system is analyzed for
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Fig. 1: WBS architecture (the names in parenthesis define the abbreviations)

the possible chains of basic events (e.g., system faults) that may cause the top event to
occur. A FT makes use of logical gates to depict the logical interrelationships linking
such events, and it can be evaluated quantitatively, e.g., to determine the probability of
a safety hazard. FTs are developed starting from the top event; causes which are con-
sidered to be elementary faults are developed as basic events, and the remaining causes
as intermediate events. This rule applies recursively to the intermediate events, which
must in turn be traced back to their causes, until the tree is fully developed [25].

Example 1 (WBS). The Wheel Braking System (WBS) case study was introduced in
[2], and later used to describe a formal specification ([19]) and refinement ([17]) of
contracts along a system architecture – it is therefore an ideal case study to evaluate
our approach. Fig. 1 shows the WBS architecture. The WBS controls the braking of the
main gear wheels for taxiing and landing phases of an aircraft. Braking is commanded
either via brake pedals or automatically. The brake is operated by two independent
sets of hydraulic pistons, supplied by independent power lines: the “green power sup-
ply” (GP), used in normal mode, and the “blue power supply” (BP), used in alternate
mode. The alternate system (AWBS) is in stand by and is selected automatically when
the normal one (NWBS) fails. An emergency brake system (EWBS) is activated when
both NWBS and AWBS fail. In normal mode, the brake is controlled by the Braking
System Control Unit (BSCU), implemented with two redundant control units. Each
sub-unit (SB1 and SB2) receives an independent pedal-position signal. Monitors detect
the failure of the sub-units, producing the “Valid” signals, and of the whole BSCU. The
Braking System Annunciation (BSA) monitors the output of the WBS, and it raises a
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Fig. 2: Fault tree of an unannounciated loss of all wheel braking developed in [1]

signal in case of every braking systems fail to operate. [2] also describes a PSSA of the
WBS, using FTA to analyze the “Unannunciated loss of all wheel braking” top event.
The resulting FT (Fig. 2) reflects how the top event depends on the unannounciated loss
of the three braking systems and develops the tree downwards, identifying the failures
contributing to the unannounciated loss of normal braking. An example of intermedi-
ate event is “Normal Brake System does not operate”, whereas “Switch failed stuck in
intermediate position” is a basic event.

4 Background notions of formal methods

4.1 LTL model checking

States and traces are defined over a set V of state variables. A state is an assignment
to V , while a trace is an infinite sequence σ = s0, s1, s2, . . . of states. We denote with
Tr(V ) the set of all traces over V . We define a language as a set of traces. We denote
with σ[i] the i-th state of σ. We use Linear-time Temporal Logic (LTL) [24] to represent
sets of traces. We assume that the reader is familiar with LTL. Given an LTL formula φ
and a trace σ, we denote with σ |= φ the fact that the trace σ satisfies the formula φ. We
define the language L(φ) as the set of traces σ such that σ |= φ.

A transition system is a tuple 〈V, ι, τ〉, where V is a set of state variables, ι is the
initial formula over V , τ is the transition formula over V and V ′ (V ′ is the set of next
versions of the variables in V ). A path of a transition system M = 〈V, ι, τ〉 is a sequence
s0, s1, . . . of assignments to V so that s0 satisfies ι and for each k ≥ 0, 〈sk, sk+1〉 satisfies
τ . We denote with L(M) the set of paths of M . Given a transition system M and an
LTL formula φ, the model checking problem is the problem of checking if every trace
accepted by M satisfies φ, i.e., if L(M) ⊆ L(φ).

4.2 Cut-Sets and Fault Tree

As described in Section 3, FTA produces all possible configurations of system faults
(called fault configurations) that cause the reachability of an unwanted condition (the
Top Level Event). More formally, given a set of faults represented as Boolean failure



mode variables F ⊆ V , we call fault configuration a subset FC ⊆ F . The set FC can
be expressed with a formula over F , namely FC> =

∧
f∈FC(f =>).

A cut set represents a fault configuration that may cause the top event. Formally,
we generalize the definition in [11] to infinite traces and LTL, as follows. Let L be a
language of traces over the variables V and let TLE an LTL formula over V . We say
that FC is a cut set of TLE in L, written FC ∈ CS(L, TLE,F), iff there exists a trace
σ in L such that: i) σ |= TLE; ii) FC ⊆ F and ∀f ∈ FC ∃ i, (σ[i] |= f = >).

Intuitively, a cut set corresponds to the set of failure mode variables that are ac-
tive along a trace witnessing the occurrence of TLE. Minimal cut sets (MCSs), writ-
ten MCS(L,TLE ,F), are those that are minimal in terms of failure mode variables:
MCS(L,TLE ,F) = {cs ∈ CS(L, TLE,F) | ∀cs′ ∈ CS(L,TLE ,F) (cs′ ⊆ cs → cs′ =

cs)}. Moreover, the set MCS(L,TLE ,F) can be expressed with a formula over F in
disjunctive normal form, namely MCS>(L,TLE ,F) =

∨
FC∈MCS(L,TLE,F) FC

>.
A Fault Tree (FT) [25] can be represented as a set of Boolean formulae over Ba-

sic Events (BE) and Intermediate Events (IE). This representation defines a tree where
leaves are BE, and nodes are IE. More specifically, the Backus-Naur Form of a Fault
Tree FT is as follows: FT ::= IE 7→ FT |FT ∧ FT |FT ∨ FT |BE. According to this
definition, the first level of the FT represented in Figure 2 can be then expressed as
“Unannuciated loss of all wheel braking” (the TLE) 7→ “Loss of all wheel braking” (an
Intermediate Event) ∧ “Loss of annunciation capability” (a Basic Event). The second
level extends the IEs of the first one, and in this example it is as: “Loss of all wheel
braking” 7→ “Alternate Brake System does not operate” ∧ “Normal Brake System does
not operate” ∧ “Emergency Brake System does not operate”. The successor levels re-
cursively define the IEs, while the Basic Events are treated as terminals, as defined by
the BNF representation of a FT.

4.3 Contract-Based Design

Components and system architectures A component interface consists of a set of
ports, which are divided into input and output ports1. Input ports are those controlled
by the environment and fed to the component. The output ports are those controlled
by the component and communicated to the environment. Formally, each component S
has interface 〈IS , OS〉 of input and output ports. We denote with VS the set of variables
related to the component interface S given by the union of IS and OS .

In order to formalize decomposition, we need to specify the interconnections be-
tween the ports, i.e. how the information is propagated around. Intuitively, the input
ports of a component are driven by other ports, possibly combined by means of gen-
eralized (e.g., arithmetic) gates. These combinations, in the following referred to as
drivers, depend on the type of the port. Without loss of generality, we assume that vari-
ables are either Boolean- or real-valued. The driver for a Boolean port is a Boolean
formula; for a real-valued port it is a real arithmetic expression. Therefore, we define a
decomposition of a component S as a pair ρ = 〈Sub, γ〉 where Sub is a non-empty set
of (sub)components such that S 6∈ Sub, and the connection γ is a function that:

– maps each port in OS into a driver over the ports in IS ∪
⋃
S′∈SubOS′ , and

– for each U ∈ Sub, maps each port in IU into a driver over the ports in IS ∪⋃
S′∈SubOS′ .

1 For simplicity, we ignore here the distinction between data and event ports.



We extend γ to Boolean and temporal formulas so that γ(φ) is the formula obtained
by substituting each symbol s in OS and IU for all U ∈ Sub with γ(s). Note that, since
φ is a Boolean or temporal formula over the ports of a single component, γ(s) does not
contain s and therefore γ(φ) is well defined (there is no circularity in the substitution).

A system architecture is a tree of components where for each non-leaf component
S a decomposition 〈Sub, γ〉 is defined such that Sub are the children of S in the tree.
We denote with γ∗ the iterative application of γ until reaching a fixpoint. Note that,
for simplicity, we are considering only synchronous decompositions for which we need
only a mapping of symbols. The framework can be extended to the asynchronous case
by considering also further constraints to correlate the ports. In the following, we also
assume that we have only one instance for each component so that we can identify the
instance with its type to simplify the presentation. In practice, we deal with multiple
instances by renaming the ports adding the instance name as prefix.

Example 2. The WBS architecture, informally introduced in Examples 1, can be for-
malized with the notion of decomposition defined above. For example, the top-level
system component SC has two subcomponents, namely WBS and BSA. Therefore
Sub(SC) = {WBS,BSA}. The mapping γ is in most of cases just a renaming. For
example, the input port P1 of WBS is driven by the input port P1 of SC. Formally
γ(WBS.P1) = SC.P1 (since we avoided the distinction between component types and
instances to simplify the notation, we here use the dot notation to have a unique name
for each port). In few cases, the driver is not atomic. For example, the output port Valid
of BSCU is driven by the disjunction of the homonyms of SB1 and SB2. Formally,
γ(BSCU.V alid) = SB1.V alid ∨ SB2.V alid.

Trace-Based Components Implementation and Environment A component S en-
capsulates a state which is hidden to the environment. It interacts with the environment
only through the ports. This interaction is represented by a trace in Tr(VS).

An input trace is a trace restricted to assignments to the input ports. Similarly, an
output trace is a trace restricted to assignments to the output ports. Given an input trace
σI ∈ Tr(IS) and an output trace σO ∈ Tr(OS), we denote with σI ×σO the trace σ such
that for all i, σ[i](x) = σI [i](x) if x ∈ IS and σ[i](x) = σO[i](x) if x ∈ OS .

Both implementations and environments of a component S are seen as subsets of
Tr(VS). Therefore, for simplicity, we do not distinguish between a language (set of
traces) and the behavioral model that generates it.

A decomposition of S generates a composite implementation given by the compo-
sition of the implementation of the subcomponents, as well as a composite environment
for each subcomponent given by the environment of S and the implementations of the
other subcomponents. In order to define formally these notions, we extend γ to states
seen as conjunctions of equalities (assignments). Note that, if s is a state, then γ(s)

represents a set of states. Considering the example of γ introduced in Example 2, if
BSCU.V alid = >, then γ(BSCU.V alid = >) is equal to (SB1.V alid ∨ SB2.V alid) =

>. Finally, we extend γ to traces seen as sequence of states.
Given a decomposition 〈Sub, γ〉 of S with Sub = {S1, . . . , Sn} and an implemen-

tation Mj for each subcomponent interface Sj ∈ Sub, we define the composite imple-
mentation CIγ({Mj}Sj∈Sub) of S as follows:



CIγ({Mj}Sj∈Sub) := {σ
I × σO ∈ Tr(VS) | ∃σO1 ∈ Tr(OS1), . . . , σ

O
n ∈ Tr(OSn) s.t.

σI × σO1 × . . .× σOn ∈ γ(M1) ∩ . . . ∩ γ(Mn) ∩ γ(σO)}

Given a subcomponent Sh ∈ Sub, an implementation Mj for each subcomponent Sj ∈
Sub\ with j 6= h, and an environment E for S, we define the composite environment
CEγ(E, {Mj}Sj∈Sub,j≤h) of Sh as follows:

CIγ({Mj}Sj∈Sub,j 6=h) := {σ
I
h × σOh ∈ Tr(VSh) | ∃σ

I ∈ Tr(IS), σO1 ∈ Tr(OS1), . . .

. . . , σOn ∈ Tr(OSn) s.t. σI × σO1 × . . .× σOn ∈ γ(M1) ∩ . . . ∩ γ(Mn) ∩ γ(σIh)}

Contracts A component contract is a pair of properties, called the assumption, which
must be satisfied by the component environment, and the guarantee, which must be
satisfied by the component implementation when the assumption holds. We assume as
given an assertion language for which every assertionA has associated a set of variables
VA and a semantics L(A) as a subset of Tr(VA). In practice, we will use LTL to specify
such assertions, but the approach can be applied to any linear-time temporal logic.

Given a component S, a contract for S is a pair C = 〈A,G〉 of assertions over VS
representing respectively an assumption and a guarantee for the component. Let M and
E be respectively an implementation and an environment of S. We say that M is an
implementation satisfying C iff M ∩ L(A) ⊆ L(G). We say that E is an environment
satisfying C iff E ⊆ L(A). We denote with M(C) and with E(C), respectively, the
implementations and the environments satisfying the contract C.

Two contracts C and C′ are equivalent (denoted with C ≡ C′) iff they have the
same implementations and environments, i.e., iff M(C) = M(C′) and E(C) = E(C′).
A contract C = 〈A,G〉 is in normal form iff the complement L(A) is contained in L(G).
We denote with nf(C) the assertion ¬A∨G. The contract 〈A, nf(C)〉 is in normal form
and is equivalent to (i.e., has the same implementations and environments of) C [7].

Example 3 (WBS contract). We are interested in defining the contract related to the
requirement of the WBS that, given the application of the braking pedals, must activate
the brakes. This is formalized with the LTL formula G = G((P1 ∨ P2) → F(Brake)).
The WBS component requires an environment that provides the same signal on the
pedal application and such that power is always supplied to the BSCU and hydraulic
pumps. This is formalized in the LTL formula A = G((P1 = P2) ∧GP ∧BP ∧ SP ).

Contract refinement Since the decomposition of a component S into subcomponents
induces a composite implementation of S and composite environment for the subcom-
ponents, it is necessary to prove that the decomposition is correct with respect to the
contracts. In particular, it is necessary to prove that the composite implementation of S
satisfies the guarantee of S’s contracts and that the composite environment of each sub-
component U satisfies the assumptions of U’s contracts. We perform this verification
compositionally only reasoning with the contracts of the subcomponent independently
from the specific implementation of the subcomponents or the specific environment.

In the following, for simplicity, we assume that each component S has only one
contract denoted with CS and is refined by the contracts of all subcomponents (the
approach can be easily extended to the general case [17]). Given a component S and a
decomposition ρ = 〈Sub, γ〉, the set of contracts C =

⋃
S′∈Sub(S) CS′ is a refinement of

CS , written C ≤ρ CS , iff the following conditions hold (see also Appendix A):



1. given an implementation MS′ for each subcomponent S′ ∈ Sub(S) such that MS′

satisfies the contract CS′ , then CIγ({MS′}S∈Sub(S)) satisfies CS (i.e., the correct
implementations of the sub-contracts form a correct implementation of CS);

2. for every subcomponent S′′ of S, given an environment E of S satisfying CS and
an implementation MS′ for each subcomponent S′ ∈ Sub(S) such that MS′ satis-
fies the contract CS′ , then CEγ(E, {MS′}S′∈Sub(S)) satisfies CS′′ (i.e., the correct
implementation of the other subcomponents and a correct environment of CS form
a correct environment of CS′′ ).

Example 4 (WBS contract refinement). As shown in Fig. 1, the WBS component is
decomposed into NWBS, AWBS and EWBS. The contracts of these subcomponents
are Cnwbs = 〈G((P1 = P2) ∧ SP ∧ GP ),G((P1 ∨ P2) → F(BN))〉, Cawbs =

〈G(BP ),G(((P1∨P2)∧¬F(BN))→ F(BA))〉, Cewbs = 〈>,G(((P1∨P2)∧¬F(BN)∧
¬F(BA)) → F(BE))〉. The connection are defined in a straightforward way. It is easy
to see that the these contracts correctly refine the contract of the WBS component. Re-
markably, the implementation of the NWBS would be sufficient to ensure the guarantee
of the parent component i.e., AWBS and EWBS systems are redundant and play a role
only in case of failures.

5 Contract-Based Fault Injection

The goal of our approach is to take as input an architecture enriched with a correct con-
tract refinement and automatically generate a hierarchically organized FT. The idea is to
introduce, for each component and for each contract, two failure ports: one representing
the failure of the component implementation to satisfy the guarantee, the other repre-
senting the failure of the component environment to satisfy the assumption. This step is
represented by the arrow labeled 1.1 in Fig. 3. The connections among such failures are
automatically generated and they are later used to produce the FT, as illustrated by label
1.2 in Fig. 3. The successive refinement of components (i.e., layers 2 and 3 in Fig. 3)
allows us to extend the analysis and generate a more detailed FT. These characteristics
of the CBSA approach mimic the recommended practices outlined in [2].

5.1 Extension of components and contracts

Given a component interface 〈IS , OS〉 of the component S, we define the extended in-
terface 〈IXS , OXS 〉 as the interface in which the inputs has been extended with the new
Boolean port fIS and the output has been extended with the new Boolean port fOS .
Namely, 〈IXS , OXS 〉 is defined as 〈IS ∪ {fIS}, OS ∪ {fOS }〉. Intuitively, fOS represents the
failure of the component implementation to meet its requirements, while fIS represents
the failure of the component environment to fulfill the component’s assumptions.

The “nominal” contract of a component is extended to weaken both assumption and
guarantee, in order to take into account the possible failure of the environment and of
the implementation. Given the contract 〈AS ,GS〉 of S, we define the extended contract
〈AXS ,GXS 〉 as follows AXS = (¬fIS)→ AS and GXS = (¬fOS )→ GS .

Note that in this simple contract extension the failure is timeless in the sense that
either there are no failures and the nominal contract holds, or nothing is guaranteed. By
convention, the failure ports are evaluated initially and the future values are don’t cares.
More complex contract extensions will be developed in the future.
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5.2 Contract-based synthesis of extended system architecture

We now describe how we generate an extended system architecture given a nominal one
with a correct contract refinement. In the extended architecture, components’ interfaces
and contracts are extended as described in the previous section, while we automatically
synthesize the connections among the extended components. The synthesis ensures that
the refinement of contracts in the extended architecture is correct by construction.

For each component S, we define the extended connection mapping γX so that
γX(p) = γ(p) for all original ports, i.e., for p ∈ IS ∪OS , while for the new failure ports
γX is defined as follows:

– γX(fOS ) := MCS>(γ((
∧
S′∈Sub(S)(A

X
S′ → GXS′)) ∧ AXS ),¬γ(GS), {fIS} ∪

{fOS′}S′∈Sub(S)). Intuitively, the driver of the failure of S’s guarantee is given by
all combinations of the failures of the subcomponents and the environment that are
compatible with the violation of the guarantee of S.

– for all U ∈ Sub(S), γX(fIU ) := MCS>(γ(
∧
S′∈Sub(S)\{U}(A

X
S′ → GXS′) ∧

AXS ),¬γ(AU ), {fIS} ∪ {fOS′}S′∈Sub(S)\{U}). Intuitively, the driver of the failure of
U’s assumption is given by all combinations of the failures of the other subcom-
ponents and the environment of S that are compatible with the violation of the
assumption of U .

The resulting extended contract refinement is correct:

Theorem 1. If {CS′}S′∈Sub(S) �γ CS , then {CXS′}S′∈Sub(S) �γX CXS .

Example 5 (Synthesis of faults dependencies for WBS component). Given the extended
contract CXwbs, the safety analysis will produce the dependencies formulae for each
fault port fOwbs, fInwbs, fIawbs and fIewbs. Specifically, the resulting faults dependency for
fOwbs := (fOawbs ∧ fOnwbs ∧ fOewbs) ∨ (fIwbs ∧ fOewbs), which means that every assignment of
such formula will cause the failure of fOwbs. This result confirms that the braking ability
of the WBS is guarantee if at least one of NWBS, AWBS and EWBS is working, but in
case of loss of the power sources (fIwbs) the EWBS is necessary in order to guarantee the
right behaviour. The following analysis for fInwbs and fIawbs will produce respectively
fInwbs := fIwbs and fIawbs := fIwbs. In fact, the subsystems NWBS and AWBS need for
BP, SP, and GP power lines, which functionality is part of the assumption of the WBS.



The last step addresses the verification of the proof obligation for fIewbs which is unsat,
expressing the fact that it has no dependencies to the other fault ports. According to this
result, Fig. 1 shows that EWBS is not dependent to any assumptions of the WBS i.e., it
does not need any power sources.

6 Contract-Based Fault Tree Analysis

6.1 Contract-based Fault Tree Generation

Given the extension of the system contract refinement, the FT is automatically gener-
ated. The top level event is the failure fOS of a non-leaf component S. It is labeled with
“Fail of CS”, where CS is the contract of S. The intermediate events are similarly la-
beled with the failure of the guarantees of the components that are used in the contract
refinement and are not further refined. The failure of the system environment is labeled
with “Fail of Environment”. The leaves of the tree are basic events, representing the
failure of the system’s assumption and the failures of the guarantees of contracts that
are not further refined. If the architecture is extended further in a step-wise way by de-
composing some leaves components, these basic events can become intermediate and
be refined further by exploiting the extended contract refinement.

The FT is generated starting from the top level event fOS and linking it to the inter-
mediate events present in γX(fOS ). Formally, if f is a basic event, then the FT is atomic:
FT (f) := f ; if f is an intermediate event, then FT (fOS ) := fOS 7→ γX(fOS ). Thus, the
FT is defined recursively until reaching the basic events. To simplify the tree, we do not
label the failure of the assumption of intermediate components. Therefore, if U is not
the system component and fIU is present in the tree, we replace it with γX(fIU ). Note
that the same failure may appear in different branches of the FT – this is standard in
FTA – hence, in the above top-down procedure we only need to expand one occurrence
of the same failure. We also assume that in the relationship among the failures there
is no circular dependency. Usually, such dependencies may be broken by introducing
time delays [25]. We leave modeling of faults with temporal dynamics and dealing with
circular dependencies to future work.

Example 6 (Automatic generation of WBS FT). By applying contract refinement to the
WBS example, we obtain the FT in Fig. 4. As it can be seen from Table 1, there is
nearly a one-to-one mapping with the FT presented in Fig. 2 – the only differences are
that: (i) in the contract-based FT the failure of the environment is considered also for
the sub-components that depends to it, and this provides a more detailed system failure
explanation; (ii) the monitoring function is more detailed in our model.

6.2 CBSA Cut-Sets semantics

We notice that, in the generated FT, the cut sets local to a single component decom-
position are minimal by construction. Here, we consider the cut sets of the whole FT
that are obtained by replacing intermediate events with their definition in the FT. We
call them flattened cut sets, since they can be represented as a two-level FT. They are
defined in terms of the failures of the basic components and of the system environment.

Let leaves be the basic components of the architecture and let root the (root) system
component. We denote with F the set of basic failure ports, i.e., F = {fOl }l∈leaves ∪



Fig. 4: Fault tree of an unannunciated loss of all wheel braking: automatically generated

Failure of Contract Description
system.annunciate braking loss Unannunciated loss of All Wheel Braking.

bsa.annunciate Loss of Annunciation Capability.
wbs.brake Loss of All Wheel Braking.
nwbs.brake Normal Brake System does not operate.
awbs.brake Alternate Brake System does not operate.
ewbs.brake Emergency Brake System does not operate.
hydr.brake Loss of Normal Brake System Hydraulic Components.

bscu.cmd valid Loss of BSCU Ability to Command Braking.
switch.select Switch Failure Contributes to Loss of Braking Commands.
bscu1.cmd Loss of BSCU sub system 1.
bscu1.valid Loss of monitoring for BSCU sub system 1.
bscu2.cmd Loss of BSCU sub system 2.
bscu2.valid Loss of monitoring for BSCU sub system 2.

Table 1: Failure of contracts description

{fIroot}, and we identify a fault configuration with an assignment to these parameters.
A cut set is therefore a fault configuration of a trace violating the top-level guarantee.

Given a failure port fS (either input or output) of a component S in the architecture,
let us define γX∗(fS) as the iterative application of γX to fS until reaching a fixpoint,
i.e., a Boolean combination of failures in F only. γX∗(fS) defines the set of flattened
cut sets obtained with CBSA. We prove that every cut set (in the standard sense) is also
a flattened cut set for CBSA.

Theorem 2. Let LX = L(γ∗(
∧
l∈leaves(G

X
l ) ∧ AXroot)).

If FC ∈ CS(LX ,¬(GS),F), then FC> |= γX
∗
(fOS ).

Here, LX represents the extension of the system architecture in a MBSA-like fashion,
where the guarantees of leaf components and the root assumption are extended locally
without explicit constraints among component failures (hence, γ∗ is used instead of
γX
∗). The converse is not true in general. In fact, for the contract refinement to be

correct, it is sufficient that the contract of the composite component is weaker than the
composition of those of the subcomponents. However, this may create cut sets that are
present considering the weaker contract, while are they ruled out by the composition.

6.3 Relationship between contracts and generated fault trees

We remark that the FT generated with the proposed approach is clearly sensitive to the
contracts and can be used to improve the CBD. For example, in the contract specifica-



tion of the WBS proposed in [19], each redundant sub-BSCU guarantees that the input
pedal application is followed by the braking command or the Validity Monitor set to
invalid within a given time bound. Following this approach, the proposed procedure
generates a FT in which each sub-BSCU is a single point of failure. In fact, a failure of
its contract means that it can keep the Validity Monitor set to true without ever braking.
This contrasts with [2]. The FT shown in Fig. 4 is actually obtained with an improved
specification, where we separated the functional part of the contract from the monitor-
ing of safety, providing a contract that says that every pedal application is followed by
the braking command and another contract demanding that the Validity Monitor is set
to invalid if the pedal is applied but the brake is never commanded.

7 Implementation and experiments

We implemented our methodology on top of OCRA [15], a tool for architectural design
based on CBD. The OCRA language allows the user to specify contracts (written in var-
ious temporal logics of different expressiveness, including LTL and HRELTL [16]), and
associate them to architectural components. The correctness of refinements is reduced
to a set of proof obligations (as per Section 4.3) – temporal satisfiability checks that
are carried out by nuXmv [22], the underlying verification platform, which provides
reasoning capabilities via BDD-, SAT-, and SMT-based techniques.

We extended OCRA in the following directions. First, we implemented primitives to
automatically extend the architectural description by means of symbolic fault injection,
extending the ports and the contracts. Second, we implemented the procedure for the
synthesis of the interconnections between failure ports among different levels, as per
Section 5. Finally, we implemented the procedure to extract FTs from the extended
models, as per Section 6. The algorithms are based on pure BDD [18], in addition to
a combination of Bounded Model Checking (BMC) [8] and BDD. In particular, the
BMC+BDD approach first computes MCSs up to a specific k-depth using BMC, and
then a BDD based routine is run to generate the remaining results.

We first evaluated the CBSA approach by modeling (several variants of) the WBS
case-study in OCRA. The analysis demonstrated very useful to provide feedback on
the structure of the contracts. In fact, as described in Section 6.3, we could improve
over the first version of the WBS model described in [19,17]. We then compared our
approach with the “flat” MBSA approach implemented in xSAP- a re-implementation
of FSAP[12]. xSAP supports FTA for behavioral models (finite state machines written
in the SMV language). We refer to the xSAP approach as monolithic, since it generates
FTs that are “flat”(i.e., presented as DNF of the MCSs). In OCRA, FTs can be generated
from behavioral models, by associating each leaf component with an SMV implemen-
tation, where the activation of failure modes causes the violation of contracts. For the
evaluation, we associated concrete implementations to the leaf WBS components. We
first evaluated the tightness of the contract extension. As described in Section 6, CBSA
can provide a “pessimistic” interpretation of the system failure, due to the hierarchical
partitioning imposed by contract decomposition. Indeed, our results confirm that this
is the case for the WBS: if the concrete implementations happen to operate correctly
even if the power is not provided, then the monolithic approach provides a tighter set of
MCSs. However, if the concrete implementations are such that a loss of power implies
a loss of functional behavior, then both techniques result in the same sets of MCSs.



M 9 10 11 12 13 . . . 29
MCS 6 11 22 42 50 . . . 3316

CBSA.BD 701 701 701 702 702 702 703
Mono.BD 619 1106 3180 T.O. T.O. T.O. T.O.
CBSA.BB 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Mono.BB 3.1 3.4 4.1 4.6 4.9 ... 582

Table 2: Scalability comparison

We also compared the scal-
ability of the monolithic and
the CBSA approach for FTA.
We considered a parameter-
ized version of the WBS,
by varying the total number
of faults (M), and the upper
bound for the cycles needed to
wait until performing an emergency reaction (N). The experiments were run on an Intel
Xeon E3-1270 at 3.40GHz. We first varied the delay N (with M = 9). With N = 10,
CBSA takes 11m40s (BDD), and 2s (BMC+BDD, with k=20), whereas the monolithic
approach takes 14m and 7s, respectively. For N = 15, CBSA times do not vary, while
the monolithic approach requires more than 50m (BDD), and 15s (BMC+BDD). The
stability in performance shown by the CBSA approach is motivated by the fact that
the time needed to compute the FT is mainly spent during the contracts evaluation,
whereas analyzing the leaves takes always less than 1s. We then fixed N = 5 and varied
M from 9 to 29. The results are reported in Table 2, where “BD” and “BB” stand for
BDD and BMC+BDD (with k=20). CBSA is subject only to a marginal degradation in
performance, since the variation is local to the computation of the FTs for the leaves.
In contrast, the monolithic method passes from 10m19s to timing out after one hour
for M = 12 (BDD), and from 3s to 582s (BMC+BDD). This degradation is directly
correlated to the increased number of MCSs, that are enumerated by the monolithic
approach. As a final remark, notice that the CBSA approach is fully incremental: the
only variation required when exploring different implementations is in constructing the
FTs resulting from the analysis of each finite state machine with respect to its contracts.
This contrasts with the considerable efforts required in the monolithic approach, that
needs to be repeated for each different implementation.

8 Conclusions

In this paper we proposed a new, formal methodology for safety assessment based on
CBD and automated fault injection. This approach is able to generate automatically hi-
erarchical FTs mimicking system decomposition, and overcomes two key shortcomings
of traditional MBSA [13], namely the lack of structure of the generated FTs, and the
poor scalability. Moreover, it provides full support to the informal, manual state of the
practice, and it can provide important feedback in the early stages of system design.

As future work, we will investigate methods to pinpoint situations where the hier-
archical decomposition leads to over-constraining, and to generate suitable diagnostic
information. Second, we will generalize fault injection with the introduction of more
fine-grained failure dynamics based on temporal patterns and the use of specific fault
models (similar to the contract extension with “exceptional” behavior [14]). We will in-
vestigate aspects related to fault propagation [3] and extend the framework to consider
richer contract specification languages to enable quantitative evaluation of FTs.
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A Additional Definitions and Proofs

For the convenience of the reviewers, we report here some additional material that has
been omitted from the body of the paper due to lack of space.

Proof obligations The following theorem defines the proof obligations of contracts
refinement, i.e., a set of formulas that are valid if and only if the contract refinement is
correct. Note that here we are considering only a synchronous interaction of subcom-
ponents, but similar proof obligations can be defined in the asynchronous case.

In the following, since we are considering the decomposition of just one component,
in order to simplify the notation, we simply write Sub for Sub(S) and γ for γ(S).

Theorem 3 ([17]). Consider a component S, with CS = 〈A,G〉, a decomposition ρ =

〈Sub, γ〉, and C =
⋃
S′∈Sub(S) CS′ . C ≤ρ CS iff the following formulas are valid:

– γ(
∧
C′∈C(nf(C

′))→ (nf(CS)))
– for all U ∈ Sub, γ(A ∧

∧
C′∈C\{CU}

(nf(C′))→ (AU ))

Proofs of Theorems We first define the following variant of the proof obligations:

– P̃O(GS) = γ((
∧
S′∈Sub(S)(A

X
S′ → GXS′))→ (AXS → GS));

– for all U ∈ Sub(S), P̃O(AU ) = γ((
∧
S′∈Sub(S)\{U}(A

X
S′ → GXS′) ∧ AXS )→ AU ).

Proof (of Theorem 1). We need to prove that (
∧
S′∈Sub(S) γ

X(AXS′) → γX(GXS′)) →
(γX(AXS ) → γX(GXS )). By definition of MCS, (¬γX(fOS )) → (P̃O(GS)), which by
definition of P̃O(GS) is equal to (¬γX(fOS )) → ((

∧
S′∈Sub(S)(γ(A

X
S′) → γ(GXS′))) →

(γ(AXS ) → γ(GS))). This can be rewritten into ((
∧
S′∈Sub(S)(γ(A

X
S′) → γ(GXS′))) →

(γ(AXS ) → ((¬γX(fOS )) → γ(GS)))) which is equal to ((
∧
S′∈Sub(S)(γ(A

X
S′) →

γ(GXS′))) → (γ(AXS ) → (γX((¬fOS ) → GS)))) and thus ((
∧
S′∈Sub(S)(γ(A

X
S′) →

γ(GXS′))) → (γ(AXS ) → (γX(GXS )))). Notice that some failure ports are variables in
the formula. Now, if this formula is valid, it is true also for the particular assignment of
γX . Therefore, we conclude that ((

∧
S′∈Sub(S)(γ

X(AXS′) → γX(GXS′))) → (γX(AXS ) →
(γX(GXS )))).

Similarly, we can prove that ((
∧
S′∈Sub(S)\{U}(γ

X(AXS′) → γX(GXS′))) →
(γX(AXS )→ (γX(AXU ))))

Proof (of Theorem 2). Consider FC such that FC> |= CS(LX ,¬(GS),F). By definition
there exists σ such that σ ∈ LX , σ 6|= GS and σ |= FC>. We extend FC> into FC′>

to consider all failure ports such that, for all components S′, FC′> |= fOS′ iff σ 6|= GS′

and FC′> |= fIS′ iff σ 6|= AS′ . Since σ ∈ LX , σ ∈ L(γ∗(
∧
l∈leaves(G

X
l ) ∧ AXroot)) and so

also σ ∈ L(γ∗(
∧
l∈leaves(A

X
l → GXl ) ∧ AXroot)). By Theorem 1, the extended contract

refinement is correct for all subcomponent S′, so that σ |= AXS′ and σ |= c.GXS′ . Thus,
σ 6|= P̃O(GS) and therefore FC′> |= γX(fOS).

Let us consider the subcomponents S′ for which FC′> |= fOS′ . Thus σ 6|= GS′ . We
can proceed recursively proving that FC′> |= γX(fOS′). Similarly, let us consider the
subcomponents S′ for which FC′> |= fIS′ . Thus σ 6|= AS′ . Thus, σ 6|= P̃O(AS′) and
therefore FC′> |= γX(fIS′). We conclude that FC′> |= γX

∗
(fOS ) and therefore also

FC> |= γX
∗
(fOS ).
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