
Supporting Requirements Validation: the EuRailCheck tool

R. Cavada, A. Cimatti, A. Mariotti, C. Mattarei, A. Micheli,
S. Mover, M. Pensallorto, M. Roveri, A. Susi, and S. Tonetta

Fondazione Bruno Kessler, IRST
Via Sommarive, 18, 38123 Povo - Trento, Italy

{cavada,cimatti,mariotti,mattarei,amicheli,mover,pensallorto,roveri,susi,tonettas}@fbk.eu

Abstract

We present the EuRailCheck tool, which supports the for-
malization and the validation of requirements, based on the
use of formal methods. The tool allows the user to analyze
the requirements in natural language and to categorize and
structure them. It allows to formalize the requirements into a
subset of UML enriched with static and temporal constraints
for which we defined a formal semantics. Finally, the tool
allows to apply model checking techniques specialized for
the validation of formal requirements.

The tool has been developed and validated within a
project funded by the European Railway Agency for the val-
idation of the European Train Control System specification.
By now, the tool has been successfully used by about thirty
railway experts of different companies.

1. Motivations

EuRailCheck is a tool developed within a project funded
by the European Railway Agency (ERA) for the formal-
ization and the validation of the European Train Control
System (ETCS) specification. ETCS defines a common train
control system to be implemented in all European countries
in order to guarantee an uninterrupted movement of trains
across the borders. It is therefore of paramount importance
to assure that the specification is consistent and is inter-
preted without ambiguity by different engineers in different
countries. The main issues of this project are that: first, the
ETCS documents are written in natural language, and thus
may contain a high degree of ambiguity; second, in order
to correctly interpret the specification, a deep knowledge
in the railway domain is necessary, but is difficult to be
combined with a background in formal methods. For these
reasons, we developed a methodology and a supporting tool
that maximize the usability for domain experts by: enrich-
ing the formal language used in the formalization phase
with graphical notations and natural language expressions;
building the tool on top of a standard engineering tool for
software development, thus hiding the direct interaction with
the verification engines.

S. Tonetta is supported by the Provincia Autonoma di Trento (project
ANACONDA).

2. Tool supported methodology

Our methodology has been presented in [2]. It consists of
three main steps:

• Fragmentation and categorization. Atomic fragments
of the requirements document are identified, catego-
rized and structured.

• Formalization. The categorized requirement fragments
are formalized with a set of concepts and diagrams
in UML, and through additional static and temporal
constraints.

• Formal validation. It consists of the definition of a
series of validation problems and the analysis of the
results given by an automatic validation check.

Each step of the methodology is supported by a specific
component of the EuRailCheck tool that is centered on the
IBM Rational Software Architect (RSA) component and on
the IBM Eclipse Platform the RSA application is built on.
The developed Eclipse plug-ins allow connecting to other
tools (MS Word, IBM RequisitePro and NuSMV or CEGAR
model checkers) to complement the functionalities needed to
support the whole specification/validation process. A view
of the software components of EuRailCheck tool is given in
Figure 1.

Rational 
Software 

Architect (RSA)
Requisite

ProMSWord
RSA Plug-ins for 
model properties 

and problem 
definition

Eclipse Platform

NuSMV/
CEGAR model 

checker

USER

Figure 1. The EuRailCheck architecture.

2.1. Fragmentation and Categorization

2.1.1. Concepts. A requirement fragment is a part of
the specification that identifies an atomic aspect of the
system. This can be the name of a concept, a fragment of a
sentence that contains a constraint on the system, a figure, a
comment. Requirement fragments are grouped according to
their purpose in the specification. Possible categories are:



Glossary, Architecture, Behavioral, Functional, Scenario,
Property, Annotation.

The Dependencies between two requirement fragments
A and B are: Strong Dependency links (A cannot exist
without B); Weak Dependency links (A can exist without
B). Refinement links (A redefines some notions of B at a
lower level of abstraction). These dependencies are used in
the formalization, to establish links among the formalized
counterparts, and in the formal validation, to identify a well
formed verification task.

2.1.2. Process. The steps for this informal categorization
and analysis are:
M1.1 The user identifies and categorizes the informal re-
quirement fragments.
M1.2 The user can create dependencies among the catego-
rized requirement fragments.

2.1.3. Tool support. The tool supports the activity M1.1
via the RequisitePro component that allows the user to
choose the set of requirements under analysis directly on
the documents, highlight the requirement fragments and cat-
egorize them according to the category taxonomy described
before. The result is a database of categorized requirement
fragments. Step M1.2 is supported by a developed plug-in
that allows the user to establish the dependencies between
the categorized requirement fragments.

2.2. Formalization

2.2.1. Concepts: UML and CNL. The language used
to formalize the requirements is a fragment of first-order
temporal logic described in [3]. The formal language is
enriched with a specification language that uses constructs
of a semi-formal language to improve the usability. We have
adopted concepts and diagrams from the UML language
such as classes, class diagrams, state machines, sequence
diagrams constructs. In order to specify static and temporal
constraints over the entities in the model, we extended UML
with a Controlled Natural Language (CNL). On the lines
of [6], we use natural language expressions that can be
mapped to temporal formulas. CNL grammar is based on
the subset of the Property Specification Language [4], which
is a standard in hardware design. It mixes linear temporal
logic with regular expressions. A CNL constraint is attached
to a class and can predicate over the attributes of that class
and the associated classes. CNL constraints are classified in:
Initial, defining constraints that are valid initially; Invariant,
defining a constraint expected to be always valid over
time; Behavior, defining a general constraint expressing
admissible behaviors; Scenario describing behaviors that
are expected to be admitted by the formalized requirement
fragments; Property, defining constraints that every possible
admissible behavior should satisfy (i.e., it defines a set of
behaviors that are not admissible).

2.2.2. Process. The formalization phase consists of the
following two activities.
M2.1 Formalization of each categorized requirement frag-
ment identified in the fragmentation and categorization by
specifying the corresponding UML concepts and diagrams,
and/or the CNL constraints. In particular, classes and class
diagrams to formalize the requirements that have been clas-
sified as Glossary; state machines to formalize requirements
classified as Functional; sequence diagrams to represent
those requirements classified as Scenarios that describe the
interaction among a set of objects; CNL to specify the
Behavioral, the Property requirements and the remaining
Scenario requirements.
M2.2 Linking of the UML and CNL elements introduced
to the textual requirements. The link is used for require-
ments traceability of the formalization against the informal
textual requirements, and to select directly from the textual
requirements document a categorized requirement fragment
to validate.

2.2.3. Tool support. The activities are supported by the
RSA component and the developed plug-ins. Here the user
can refer to the database of the categorized requirement frag-
ments to translate them into the corresponding set of UML
concepts directly exploiting RSA’s UML editor. Moreover,
the tool provides the domain expert with an editor, equipped
with a syntax checker, to specify the CNL constraints
associated to the UML constructs. Once specified, the set of
formal constructs can be linked to the categorized require-
ment fragments they refers to in a simple drag and drop
manner. The result of the phase is the formalization of all
the categorized requirement fragments and the specification
of the information related to the traceability between each
categorized requirement fragment and its formal counterpart.

2.3. Validation

2.3.1. Concepts: checks and diagnostic information. This
phase aims at improving the quality of the requirements.
This goal is achieved by performing several analysis, based
on the use of formal techniques, which may help to pinpoint
flaws that are not trivial to detect in an informal setting.
The different analysis that are possible over the formalized
requirements are:
Logical Consistency to formally verify the absence of logi-
cal contradictions in the considered formalized requirement
fragments (e.g. the absence of two fragments mandating
mutually incompatible behaviors).
Scenario compatibility to verify whether a scenario is ad-
mitted given the constraints imposed by the considered
formalized requirement fragments.
Property checking to verify whether an expected property
is implied by the considered formalized requirement frag-
ments.



The above checks not only produce a yes/no answer, but
they can also provide the domain expert with diagnostic
information of different forms:
Traces. When consistency and scenario checking succeeds,
it is possible to produce a trace witnessing the consistency,
i.e. satisfying all the constraints in the considered formalized
requirement fragments. Similarly, when a property check
fails the tool provides a trace witnessing the violation of
the property by the formalized requirement fragments.
Unsatisfiable core. If the specification is inconsistent or the
scenario is incompatible, no behavior can be associated to
the considered formalized requirement fragments; in these
cases, the tool can also generate diagnostic information in
the form of a minimal inconsistent subset. This information
can be given to the domain expert, to support the identifi-
cation and the fix of the flaw.

2.3.2. Process. The validation process consists of three main
steps:
M3.1. The user chooses a set of requirements to focus the
validation on particular aspects of the specification.
M3.2. The user defines a set of problems, each one consisting
of a set of objects and a set of scenarios and properties.
M3.3. The user checks the defined problems and analyzes
the results.

The above validation steps can be iterated arbitrarily, by
correcting formalized requirement fragments and/or the cor-
responding categorized requirement fragments if necessary,
creating new scenarios, new properties, and by analyzing
different aspects of the requirements specification.

2.3.3. Tool support. The definition of the set of require-
ments of interests (M3.1) is supported by a plug-in that takes
care of checking the completeness of the set with regards
to the dependencies defined in M1.2. The user may define a
problem with a special class whose attributes are considered
the objects of the problems, and the attached constraints are
considered the scenarios and the properties of the problem.
Thank to the links with the formal elements created in M2.2,
the selected informal requirement fragments correspond to
a set of formalized requirement fragments. With this formal
model and a given problem, the tool automatically translates
the problem into an equi-satisfiable problem for the model
checker: the problem admits a model if and only if the model
checker finds a trace. The trace is mapped back to the tool
and is visualized to the user. If the problem is unsatisfiable,
the user may choose to look for an unsat core. This is
presented to the user as a list of formalized requirement
fragments that caused the inconsistency.

3. Conclusions

In this paper we described the EuRailCheck tool, which
supports an end-to-end methodology for the analysis of

requirements. The tool guarantees traceability, by allowing
for a direct correspondence between the components of the
informal specification and their formalized counterparts. The
tool integrates, within a commercial environment, techniques
for requirements management, for model-based design, and
advanced techniques for formal validation. The tool allows
the user to check consistency, entailment of required prop-
erties, and compatibility with desirable scenarios. The tool
has been presented to and validated by about 30 potential
users coming from 11 different railway organizations. The
feedback was particularly positive by the people working on
the ETCS specification and by those working for certifying
bodies.

Although the tool has been validated in the railway
domain, it has not been customized to this particular appli-
cation domain. The language and the techniques are enough
general to be applied to different domains. In particular,
the language is suitable for the formalization of high-level
requirements that constrain the interplay among objects, and
their temporal evolution, even with real-time aspects.

In the future, we will try to improve the automation and
the usability of the process. Currently, the first two phases of
the methodology are the most demanding in terms of manual
intervention. Works such as [5] and [1] aim at extracting
automatically from a natural language description a formal
model to be analyzed. Although, they are very limited in the
expressiveness of the language and on the formal analysis
of the requirements, our methodology can benefit from
mature natural language processing techniques which are
able to automatically dig out the ontology of the domain.
On another line of activity, we will explore extensions to
the expressiveness of the formalism, the relative scalability
issues and optimization of the verification tools.

References

[1] V. Ambriola and V. Gervasi. On the Systematic Analysis of
Natural Language Requirements with CIRCE. Autom. Softw.
Eng., 13(1):107–167, 2006.

[2] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. From
Informal Requirements to Property-Driven Formal Validation.
In FMICS, volume 5596 of LNCS, pages 166–181, 2008.

[3] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. Object models
with temporal constraints. Journal of Software and Systems
Modeling (SoSyM), 8(4), 2009.

[4] C. Eisner and D. Fisman. A Practical Introduction to PSL.
Springer-Verlag, 2006.

[5] A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. Vanocchi,
and P. Moreschini. Assisting Requirement Formalization by
Means of Natural Language Translation. Formal Methods in
System Design, 4(3):243–263, 1994.

[6] R. Nelken and N. Francez. Automatic Translation of Natural
Language System Specifications. In CAV, volume 1102 of
LNCS, pages 360–361, 1996.


