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Abstract

Assuring safety and reliability is fundamental when developing a safety
critical system. Road, naval and avionic transportation; water and gas
distribution; nuclear, eolic, and photovoltaic energy production are only
some examples where it is mandatory to guarantee those properties. The
continuous increasing in the design complexity of safety critical system calls
for a never ending sought of new and more advanced analytical techniques.
In fact, they are required to assure that undesired consequences are highly
improbable.

In this Thesis we introduce a novel methodology able to raise the bar
in the area of automated safety and reliability analysis. The proposed ap-
proach integrates a series of techniques, based on symbolic model checking,
into the current development process of safety critical systems. Moreover,
our methodology and the resulting techniques are thereafter applied to a se-
ries of real-world case studies, developed in collaboration with authoritative
entities such as NASA and the Boeing Company.

Keywords
[Model-Based Safety Assessment, Symbolic Model Checking, Safety Assess-
ment, Reliability Analysis, Fault Tree Analysis, Contract-Based Design,
Minimal Cutsets]
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1

Introduction

If a machine is expected to be infallible,
it cannot also be intelligent.

– Alan Turing

It is the 1906, and Lee de Forest invents the vacuum tube and makes
way for the active electronics. 30 years later, this result had a huge impact
in WWII which pushed on this technology and initiated the electronic
revolution. Colossus, the world’s first programmable computer, was one
of the most important application of such technology, but in this Thesis
we refer to this period for a different reason: the emerging of safety and
reliability engineering.

Electronic researches during WWII contributed in the development of
technological applications such as radio, radar, and television. At the
same time, the vacuum tubes were also the main cause of equipment fail-
ure, in fact they required to be replaced five times more often then all
other equipments. This recurring issue required to investigate on the defi-
nition of specific analysis, able to attribute the cause of such unreliability
of the electrical components. In a general perspective, the term reliabil-
ity attributes to the system capability of behaving in accordance with its
prescribed functionality, in fact a failure of a vacuum tube in an electrical

1



1. INTRODUCTION

device can cause the entire system not to working property. Differently,
system safety is the property of not causing damage, risk, or injury. After
WWII, specific studies in this direction arose from the necessity to deal
with the increasing level of complexity in military aircraft and ballistic
missile systems.

Over the years, the vacuum tubes were replaced by transistors, and
their successive miniaturization has allowed for the increasing in system
capability and complexity. In parallel to this trend, safety and reliability
engineering have had to evolve by introducing new and more efficient ap-
proaches able to support the design, and avoid unintended behaviors, of
such complex systems. In the current era, the problem of assuring safety
and reliability affects the design of systems that are definitely more per-
vasive than the purely military ones. Most notably areas of application
for such disciplines are road, naval and avionic transportation; water and
gas distribution; and nuclear, eolic, and photovoltaic energy production.
Guaranteeing safety and reliability in these applications is mandatory, thus
they are categorized as safety critical systems. The process that guides the
development of a safety critical system is highly controlled and standard-
ized by the competent authorities. In fact, releasing a certificate of system
conformance requires to guarantee that system requirements, defined at
the early stages of the development, are fairly derived into the system and
sub-systems design, correctly implemented into the production phase, and -
finally - that the concrete system implementation is in accordance with sub-
systems, system, and the original requirements definition. Each of these
phases is characterized by a set of well established analysis and method-
ology, which guides the system design through an incremental refinement
from initial requirements definition to the final system implementation.
The resulting process has two parallel flows: one that analyzes the system
under normal conditions, and the other that evaluates its robustness in
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presence of components’ failure. The former is the system development
V-Model, and the latter is called safety assessment.

Modern safety critical systems have become so complex that their safety
cannot be shown solely by test, and whose logic is nearly impossible to
comprehend without the aid of analytical tools. The approach that, in the
last decades, emerged to cope with such complexity is the use of formal
methods. In practice, a system behavior can be defined with a variety of
diagrams, textual descriptions, and operational procedures, but in all cases
they must be well defined and tailored to avoid ambiguous interpretations.
The application of formal methods solves this issue by providing a set of
mathematical based techniques that allow the engineer to discharge the
possibility of introducing design misinterpretations. Since the resulting
formal representation of the system has a unique interpretation, therefore
it can be interpreted by a software that allows for automated or semi-
automated analysis to discover design flaws, and to validate the result.
The introduction of model checking, in early 1980s, represented one of
the most important achievements in the field of formal methods. In fact,
this technique allows for exhaustively and automatically check whether a
formal system definition - the model - meets a set of formal requirements.
However, while highly promising, model checking required several years
to be effectively applied to a real-world scenario and be integrated into a
development process.

In the 1990s, the advances of the model-based techniques have received
significant interest in the community of safety and reliability engineering.
The ensemble of those disciplines is defined as model-based safety assess-
ment (MBSA). The objective of this research field is to support the analysis
prescribed by the safety assessment process, by relying on the definition
of a formal model of the system. In particular, original MBSA techniques
[68, 100, 13] were directed to provide a single formalism able to automa-
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tize the production of classical safety artifacts such as Fault Trees (FT)
and Fault Modes and Effects Analysis (FMEA) tables. However, those ap-
proaches were operating only at the safety assessment level, and the relation
with the nominal system analysis (i.e., the V-Model) was not considered.

The successive integration with model checking techniques allowed to
reduce this gap [29, 39, 38, 42, 11, 22, 21, 37]. However, the resulting
techniques were not directed to natively support the distinctive refinement
of the design that characterizes the development of a safety critical system.
At the same time, they experience significant issues when dealing with real-
world, large scale system designs.

Contributions

In this Thesis we define a set of comprehensive model-based safety assess-
ment methodologies and techniques able to overcome the limitations of
current approaches. The proposed solution provides i) a seamless integra-
tion with standard V-Model and safety assessment processes, ii) able to
natively follow the characteristic refinement of the system design, iii) by
providing advanced and completely automated techniques for assuring sys-
tem safety and reliability, iv) while guaranteeing the ability to deal with
real-world system designs.

This target has been reached by integrating several different techniques
into a single framework. The contributions of this Thesis that support
these results are the followings:

• In [30] we improve the performance of the minimal cutsets computa-
tion, which represents the basis of all model-based safety assessment
techniques that rely on symbolic model checking. This result has been
possible via the application of modern SAT-based algorithms. More-
over, we widen the level of expressivity supported by the minimal
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cutsets computation, moving from pure invariant definition of system
specifications to a full support of Linear Temporal Logic (LTL) [102].

• In [35] we encompass an emerging paradigm called contract-based
design (CBD) in order to define a novel methodology that natively
supports the refinement of system design. In fact, CBD introduces a
formal approach to automatically analyze the correctness of system
decompositions into a hierarchy of sub-systems and modules.

• We extend current model-based safety assessment methodologies in
order to support the reliability analysis of redundant architectures
[33]. This approach integrates Satisfiability Modulo Theory (SMT)
and minimal cutsets computation in order to support the analysis in
the early stages of the system design e.g., when modules implemen-
tation have not yet defined. Moreover, in [34] we apply a specialized
technique based on model abstraction that significantly improves the
performance.

• We implemented all aforementioned techniques into a set of specialized
tools such as nuXmv [97], xSAP [27], and OCRA [54], which are en-
gineered in order to support a comprehensive framework that follows
the system design by supporting both V-model and safety assessment
processes.

• In order to validate the practical applicability of the methodologies in-
troduced in this Thesis, we applied them to a series of real-world case
studies. Most notably, the aforementioned approaches are applied
in a joint project with the National Aeronautics and Space Agency
(NASA) to formally analyze a series of possible designs for the next
generation of the Air Traffic Control system (ATC) [90, 69]. Fur-
thermore, an analysis of the reliability has been applied to the archi-

5



1. INTRODUCTION

tectural design of the Primary Flight Computers of the Boeing 777
and Airbus A330. Moreover, we discuss the effectiveness of the pro-
posed approach to produce safety analysis artifacts, by applying it to
a case-study described in the Aerospace Information Report [109];

• We provide the whole documentation regarding case studies and tools
at the link www.mattarei.eu/cristian/thesis.

Structure of the Thesis

The rest of this Thesis is organized as follows:

• Part I provides the background notions that identify the starting point
of this Thesis. This Part provides an overview of V-Model and safety
assessment processes, their integration with formal methods, and a
set of formal definitions characterizing the problem that we intend to
solve.

• Part II elaborates on the problem of minimal cutsets computation.
The first portion describes how to relate nominal design and its exten-
sion with failure behaviors. Previous techniques are then discussed, in
addition to a set of simple extensions that can be applied to solve this
problem. This Part continues with the introduction of novel tech-
niques that define the new state of the art in the minimal cutsets
computation. An extensive experimental evaluation is then described,
followed by the description of an LTL extension, and future directions.

• Part III describes the integration of safety analysis with contract-
based design. In this Part we follow the description of the technique
with a running example taken from an avionic standard. Subsequently,
we provide a detailed definition of contract-based design, which is then
extended into the contract-based safety analysis approach. This Part
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concludes with an experimental evaluation and a discussion on future
directions.

• Part IV elaborates on the techniques for the reliability analysis of
redundant architectures. Firstly, it provides an overview of the tech-
niques used to increase hardware reliability by the application of com-
ponents redundancy. Afterwards, we provide the detail of the auto-
mated technique based on Satisfiability Modulo Theory, and its sub-
sequent improvement based on predicate abstraction. Experimental
evaluations and future directions conclude this Part.

• Part V is devoted at describing the tools architecture that we designed
in order to carry out the aforementioned techniques. This Part de-
scribes the evolution that have been applied on nuXmv, xSAP, and
OCRA tools in order to defined the model-based safety assessment
approach described in this Thesis. A discussion on the resulting com-
prehensive process is then provided.

• Part VI supports the effectiveness of the techniques that we have in-
troduced in this work, by providing the details of their application
to a set of real-world case studies. In this Part we first describe the
analysis of a triple modular generator, which is a small but repre-
sentative example to introduce the application of model-based safety
assessment. Afterwards, we provide the details of the evaluation of
the next generation of the air traffic control system, the analysis of
the Fly-by-Wire architectures of two modern aircraft, and an extract
of the results reached on the evaluation of an avionic based wheel
braking system.
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Part I

State of The Practice and
Background Notions





Introduction

The development process of a safety critical system is subject to a set
of different analyses and methodologies that are combined together into
a united framework. Such process, identified as Validation, Verification,
and Safety Assessment, is well established in the community of system
development. In parallel, the symbolic model checking has emerged in the
last decades as a valid technology to prove system correctness, both for
hardware and software components.

This Thesis concerns the application of symbolic model checking tech-
niques to the development process of a safety critical system, and in this
Part we provide an overview of both disciplines as a background of the
Thesis contributions.

This rest of Part I is organized as follows:

• Chapter 2 describes the current development process of a safety critical
system;

• Chapter 3 provides an overview of the methodologies that integrate
model based analysis in the safety assessment process;

• Chapter 4 defines some technical background relevant for the tech-
niques that we will introduce in this Thesis.
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2

Safety Critical Systems Development

The continuous increase in complexity and capabilities of every electri-
cal and mechanical systems is a never ending story. The development of
novel and more advanced technologies require more advanced evaluation
techniques, able to guarantee the correctness of design and implementa-
tion. In fact, the development process of systems like micro processors,
motor vehicles, power plants, and aircraft are highly detailed and complex,
characterized by multiple levels of sub-processes and analysis. Airbus In-
dustries produces every year an average of 123 millions of pages [113], only
for the customers documentation. Essentially, when dealing with such a
complex system, only the management of the documentation describing
the system and its development requires, per se, a well defined process. In
case of aircraft developments, on top of their complexity, the main concern
regards safety and reliability aspects.

The development of such a complex safety critical system requires a well
defined process that clearly defines each phase of design and implementa-
tion, which in turn are divided into several sub-processes and sub-phases.
Each of those phases are defined with a clear set of analyses and expected
outcomes, whose satisfactory results prescribe the transition to the next
phase.
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Figure 2.1: Standard V-Model

In general, each field relies on slightly different interpretations of the
development process, however in this Thesis we refer to the one provided
by the Society of Automotive Engineers (SAE) in the Aerospace Recom-
mended Practice (ARP) [108, 107]. The SAE is an association of engi-
neering professionals devoted to the definition of standard that guide the
development of transportation systems.

2.1 The V-Model

The development of a safety critical systems such as aircraft is guided by
the V-Model process [108]. The V-Model is a specialization of the water-
fall, and it relates each step of the design phase with a post-implementation
phase, by defining (in the former) how the requirements are produced, and
(in the latter) how they are verified against the implementation. Figure 2.1
shows a graphical representation of the V-Model. The left-side describes
the system definition considering requirements, architecture and expected
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Figure 2.2: Standard V-Model with Safety Assessment

behavior of each single component. Differently, the right-side shows how
to evaluate if the system implementation is in accordance with the re-
quirements. The horizontal dimension of the V-Model express which step
of system definition (left-side) is in relation to the verification and test-
ing phase (right-side). For instance, the first step “System concept and
requirements definition” defines the acceptance criteria for “System accep-
tance and maintenance”.

2.2 Safety Assessment

Safety aspects are paramount in the development of a safety critical sys-
tems, thus the V-Model needs to be extended with a specialized process in
order to property address this requirement. Such extension is called Safety
Assessment.

The Safety Assessment, shown in the red part of Figure 2.2, integrates
each phase of the V-Model with a set of specialized activities and analy-
sis aimed at defining the system hazards, their severity and how they are
addressed during the design phase. Moreover, the Safety Assessment pre-

15



2. SAFETY CRITICAL SYSTEMS DEVELOPMENT

scribes also how to verify whether the system implementation meets the
safety requirements. More specifically, the Safety Assessment process is
defined by the following steps:

• Functional Hazard Analysis (FHA): it identifies the potential risks of
functional losses by assigning to them a severity degree;

• Preliminary System Safety Assessment (PSSA): it derives safety re-
quirements for the subsystems. The PSSA process iterates with the
design evolution in order to refine system safety requirements;

• Preliminary Module Safety Assessment: it verifies whether the refine-
ments of the sub-systems obey the safety requirements derived in the
PSSA phase. This step iterates with the module design evolution in
order to refine the sub-systems safety requirements;

• System and Module Safety Assessment (SSA): once design implemen-
tation is completed, the System Safety Assessment process verifies
whether the safety requirements are met in the implemented design.

• Certification: the analysis performed in previous steps allow the sys-
tem to be certified according with the requirements defined early in
the process.

Safety Assessment phases are carried out by relying on specific tech-
niques, whose the most relevant ones are Fault Tree Analysis (FTA) and
Fault Mode and Effects Analysis (FMEA) [107, 117].

2.2.1 Fault Tree Analysis

Fault Tree Analysis [118, 117] is a deductive technique, whereby an unde-
sired state (the so called top level event – TLE) is specified, and the system
is analyzed for the possible fault configurations (sets of faults, a.k.a. basic
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Figure 2.3: Fault Tree Example

events) that may cause the top event to occur. Fault configurations are
arranged in a tree, which makes use of logical gates to depict the logical
interrelationships. Sub formulas of such tree may represent representative
partial failure conditions, due to this fact they are labeled as intermediate
events. For instance, considering the fault tree in Figure 2.3, the malfunc-
tion of left or right aircraft engine represent cause for the intermediate
event “Loss of Thrust”.

Of particular importance in safety analysis is the list of minimal fault
configurations, i.e. the Minimal Cut Sets (MCSs). More specifically, a cut
set is a set of faults that represents a necessary and sufficient condition
that may cause a system to reach an unwanted state/behaviour. For in-
stance, the cut sets in the fault tree of Figure 2.3 are {Loss of Left Engine,
Loss of Right Engine}, {Loss of Hydraulic System}, and {Loss of Electrical
System}. Moreover, minimality implies that every proper super-set of it
cannot prevent the possibility to have the malfunction. Important implica-
tion of this aspect is that the Fault Tree collapses to TRUE when the safety
hazard is reachable without triggering of any fault. This configuration is
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Fault Configuration Intermediate Events Top Level Events

“Loss of Hydraulic System”
“Loss of Fly-by-Wire

System”
“Unintended Change of

Flight Altitude”

“Loss of Electrical System”
“Loss of Fly-by-Wire

System”
“Unintended Change of

Flight Altitude”
“Loss of Left Engine” and

“Loss of Right Engine braking”
“Loss of Thrust” “Unintended Change of

Flight Altitude”

Table 2.1: Example of an FMEA table (w.r.t. FT in Figure 2.3)

represented by the empty set, which is evidently minimal.

2.2.2 Fault Mode and Effect Analysis

FMEA works in a bottom-up fashion, and aims at producing a tabular
representation (called FMEA table) that represents the causality relation-
ships between (sets of) faults, intermediate events and a list of properties
(representing undesired states, as in the case of FTs). Although FMEA
is different in spirit from FTA, generation of MCSs can also be used as
a building block for computing FMEA tables, in particular under the as-
sumption of monotonicity [41]. For instance, the FMEA table in Figure 2.1
represents the MCS obtained from the FT in Figure 2.3.

2.2.3 Qualitative and Quantitative Analysis

Fault Tree Analysis and FMEA are, in principle, qualitative analyses i.e.,
the outcome is an unquantifiable measure subjective to a pass/fail result.
However, an important aspect of safety assessment is the quantitative eval-
uation, i.e. the association of basic and intermediate events with probabil-
ities.

In particular, the determination of the probability of the TLE is used to
estimate the likelihood of the safety hazard it represents. Such computa-

18



2.2. SAFETY ASSESSMENT

tion can be carried out by evaluating the probability of the logical formula
given by the disjunction of the MCSs. It is standard practice, in particular
for complex systems, to consider only cut sets up to a maximum cardinal-
ity – in order to simplify the computation. This approach is justified by
the fact that, in practical cases, cut sets with high cardinality have low
probabilities, and may be “safely” ignored. However, it is essential to have
criteria to estimate the error which is inherent in such approximation, since
under-approximating the probability of a hazard would not be acceptable.
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3

Model-Based Validation,
Verification, and Safety Assessment

In the last decades the system complexity has been dramatically increased,
and their development and validation consumes an ever-increasing percent-
age of the total development cost.

This aspect reaches even more importance in the development of a safety
critical system, where a hardware or software component failure may lead
to a loss of life. Authorities categorize those events as catastrophic, and
require them to be so unlikely that their occurrence is not expected during
the entire life of the system [9]. In principle, the malfunction of a complex
safety critical system can be caused by hardware failures or design flaws.
This Chapter concentrates on the Model-Based techniques, which aim at
supporting the system design in order to minimize the possibility of intro-
ducing design errors. In particular, such techniques support the definition
of the system requirements, guarantee that they are met by the high level
system design and properly derived into the low level system definition,
and correctly implemented by hardware and software components. This
approach relies on formal models and specifications in order to guaran-
tee an unambiguous traceable process that links system requirements to
system implementation, going through the entire design phases.
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Formal Model-Based techniques have become essential, and sometimes
even required, in the development of modern complex safety critical sys-
tems [83, 95]. The progressive integration of such techniques has been
enabled by the significant increase in scalability performance in formal
verification [103].

3.1 Formal Validation and Verification

Formal validation and verification is a proof-based methodology to assess
the correctness of specifications, system design, and implementation. In
principle, formal V&V can be a pure paper-and-pencil activity, thus the
use of automated formal analysis guarantees a higher degree of confidence,
and reduces the cost and time needed to carry out the proof of correct-
ness. Possible techniques that can be used to perform formal V&V include
automated theorem proving, abstract interpretation, and model checking.
However, in this Thesis we concentrate on the latter.

3.1.1 Formal Specification

The first step of this process is the formal specification of system require-
ments. This process is carried out by translating the informal requirements
by using a notation derived from mathematical logic.

This transformation guarantees a complete unambiguous interpretation
of the system requirements, otherwise not possible when relying on informal
languages i.e., English. More specifically, the formal definition of system
requirements is composed of: i) the expected behavior and characteristics
of the system, ii) the system design itself, and iii) a set of assumption on
the environment in which the system has to operate.

For instance, the requirement “A loss of thrust power shall not be caused
by a single engine failure” represents a characteristic of an aircraft design,
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while “the hydraulic system provides hydraulic power to the Fly-by-Wire
system” is prescribing part of the system architecture. Differently, “the
system design does not take into account the impact with objects wider
than 1 meter” defines an assumption on the environment. Moreover, the
formal specification should also consider to provide a reasonable interpre-
tation of the basic environmental assumptions such as the physical laws.
This interpretation should be in accordance with the level of abstraction of
the formal model e.g., describing that an aircraft cannot be in two different
positions at the same time might require only a mutual exclusive condition.

Expected behavior, system design, and environmental assumptions are
usually refined during the design process, and they range from a high-level
abstract representation of the system, to a detailed implementation of the
modules composing it.

3.1.2 Formal Validation

Particularly important in formal analysis is to guarantee that the formal
specification fulfills the intended semantics. This check is carried out by
the Formal Validation. More specifically, this phase aims at increasing the
confidence that the formal specification represents a correct interpretation
of the system expected behavior, system design, and environment behav-
ior. In fact, the formal validation analysis should check that the formal
specification i) does not contain contradictory or tautological definitions
e.g., the expected behavior that “during cruise operation, the aircraft alti-
tude shall be always greater than 35000 feet” is in contradiction with “the
pilot can always be able to perform the intended maneuver”; and ii) that
it provides a correct interpretation of the definitions that are intended to
be refined. In fact, in a refinement based process - as in the V-Model - the
first step formalizes the conceptual requirements, while the successive ones
iteratively refine the formalization of the preceding high level requirements.
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All analysis described in this phase are usually performed over both
whole formal specification, and on some relevant sub parts. For instance,
considering that we want to analyze the ability of an Air Traffic Control
system to avoid mid-air collisions between two aircraft. In this case, the
formal validation phase should guarantee that the environment conditions
allow two aircraft to be at the same position at the same time.

3.1.3 Formal Verification

Formal verification is the use of proof methods to prove that, given the
environmental assumptions, the formal design of the system fulfills the re-
quirements. The artifacts produced by this analysis are subjected to an
evaluation, ensuring that they match the expected result. In fact, the
positive result prescribes the possibility to move to the next refinement
phase. In case of an unsatisfactory result, the process prescribes to recon-
sider the interpretation expressed by the formal specification, and revise it
accordingly.

3.2 Model-Based Safety Assessment

Model-based safety assessment is a natural extension to the formal V&V
by integrating safety aspects of the overall process into the formal analysis
framework. This approach, which is less consolidated than the formal
V&V, aims at supporting the production of safety artifacts, like Fault
Trees and FMEA tables, by relying on formal techniques.

The model-based safety assessment mimics the steps that characterize
the V&V process. In particular, it prescribes to i) define a set of for-
mal safety requirements, ii) formalize the system failure conditions, and
iii) evaluate whether the system satisfies the safety requirements.

Considering that the outcomes of the safety analysis are (usually) Fault
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Trees and FMEA tables, therefore the safety requirements express expected
properties over those artifacts. For instance, conditions like “single failures
cannot cause a Loss of Thrust” and “the probability of an Unintended
Change of Flight Altitude should be less than 10−9 per flight hour” are
possible safety requirements.

In standard model-based safety assessment, the formalization of system
failure conditions usually rely on a single failure model that describes how
each component may fail, and which might be the resulting implications.
Afterwards, all failure conditions are combined together and represented
in the form of Fault Trees and FMEA tables.

Afterwards, the analysis of whether the system satisfies the safety re-
quirements are directly derived from an inspection of the safety artifacts
produced in the previous phase. For example, the Fault Tree represented
in Figure 2.3 satisfies the safety requirement “single failures cannot cause
a Loss of Thrust”, in fact that event requires “Loss of Left Engine” and
“Loss of Right Engine” to occur.

More advanced model-based safety assessment techniques integrate more
tightly the formal V&V process. In this case, the effects that derive from
a component failure are directly extracted from the formal specification
defined in the V&V phases. This approach has an evident advantage of
relying on a single model for both nominal and safety analysis, thus mini-
mizing the possibility of introducing errors in the formalization phase.
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4

Technical Background

This Chapter provides the technical background representing the starting
point of all techniques introduced in this Thesis. In particular, Sections 4.1
and 4.2 elaborate on the notions of Satisfiability Modulo Theory (SMT)
and Binary Decision Diagrams (BDD), which represent the bases for the
formal representation of a system. Section 4.3 defines the problem of Sym-
bolic Model Checking that will be applied both to finite and infinite state
systems, representing also the main technology used in this Thesis to in-
stantiate a formal validation, verification, and safety assessment process.

4.1 Satisfiability Modulo Theory

The Boolean Satisfiability Problem (SAT) is the problem of determining
if there exists a total truth assignment, to a given propositional Boolean
formula, that evaluates to TRUE. In general terms, a propositional formula
is an arbitrary combination of conjunction or disjunction of literals (e.g., A
and ¬A are literals). However, every propositional formulas can be reduced
into Conjuntive Normal Form (CNF), which consists in a conjunction of
disjunction of literals, where each disjunctive is called clause. Differently,
a Disjunctive Normal Form (DNF) represents a propositional formula as a
disjunction of conjunction of literals. For instance, A∨ (B ∧C) is in DNF,
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while (A ∨B) ∧ (A ∨ C) is the CNF counterpart.
The Satisfiability Modulo Theory (SMT) is an extension of the SAT

decision problem, where the formula is not purely Boolean, but it is ex-
pressed in a combination of theories expressed in first order logic with
equality. The definition of an SMT problem, as in SAT, is a conjunction
of clauses, but in this case each literal can be expressed as a predicate over
non Boolean variables. Examples of common used theory in verification
are the following:

• Equality and Uninterpreted Functions (EUF):

((x = y) ∧ (y = f(z)))→ (g(x) = g(f(z)));

• Difference logic (DL):

((x = y) ∧ (y − z ≤ 4))→ (x− z ≤ 6);

• Linear arithmetic over the rationals (LA(Q)):

(Tδ → (s1 = s0 + 3.4 ∗ t− 3.4 ∗ t0)) ∧ (¬Tδ → (s1 = s0));

• Linear arithmetic over the integers (LA(Z)):

(x := xl + 216xh) ∧ (x ≥ 0) ∧ (x ≤ 216 − 1).

While a propositional Boolean formula can be satisfied by a finite num-
ber of possible models, in case of an SMT formula this set may be infinite.
For instance, the SMT formula (x > 0), with x being a Rational variable,
is satisfiable for every value of x greater than 0.

Analogously to SAT/SMT, the All-SAT/All-SMT problem consists in
determining all satisfiable assignments of a given propositional/SMT for-
mula.
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(a) Complete (b) Reduced

Figure 4.1: BDD example of the formula A ∨ (B ∧ C)

4.2 Ordered Binary Decision Diagrams

An (Ordered) Binary Decision Diagram, namely BDD, is a data structure
used to represent a Boolean formula. In particular, a BDD, as shown by the
example in Figure 4.1, is a single rooted binary acyclic graph, with internal
decision nodes and two final nodes (i.e., TRUE and FALSE). Each decision
node N has two outgoing edges, then and else edge. Those edges differ in
the semantics, in fact taking the then edge means to assign the variable
that labels N to TRUE, while FALSE in case of the else one. Intuitively,
a path from the root to the TRUE node represent a valid assignment to
the formula, while the paths leading to FALSE are not valid assignments.
Moreover, the order of which the variables are visited in a path is called
variable ordering.

Each path in the BDD in Figure 4.1a visits every label. However, nodes
like the right most C are not necessary to represent a satisfiable assignment
of the formula. In fact, both outgoing edges end up to the same node, thus
they can be safely “removed”. Applying this operation until all nodes have
separate destinations for their outgoing edges generates reduced BDD, as
represented in Figure 4.1a. A very important characteristic of this structure
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is that, given a variable ordering, two formulas produces the same BDD if
and only if they are equivalent. Thus, a BDD is a canonical form of the
models satisfying a formula.

4.3 Symbolic Model Checking

This section describes a formal framework that is commonly used to de-
scribe transition based systems, and formal requirements. Those formal
concepts are then linked together by the introduction of the Symbolic
Model Checking, which instantiate the problem of verifying whether a tran-
sition system obeys or not a formal requirement.

4.3.1 Symbolic Transition System

In this work we concentrate on systems that can be represented as Symbolic
Transition Systems (STS). This formalism, as in Definition 4.3.1, describes
the behavior of a discrete system characterized by a set of possible initial
states, and a transition relation that expresses how the system evolves from
a state to the next one. In the context of a transition relation, the states
before and after the transition are usually called respectively current and
next.

In this case, the transition system is called symbolic because the set of
states are represented with a formula (for the shake of clarity, we consider
it as Boolean). This approach allows for a concise representation of the
system states, in fact they are defined as the satisfiable assignments of that
formula.

Definition 4.3.1 (Symbolic Transition System). A Symbolic Transition
System is a tuple S = 〈V, I, T 〉 where V is a set of (state) variables, I(V )
is a formula representing the initial states, and T (V, V ′) is a formula rep-
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resenting the transitions. A state of S is an assignment to the variables
V .

A symbolic transition system describes the evolution of a system as an
initial state and a series of transitions that link a state to the next one.
Such, possibly infinite, executions are called traces (see Definition 4.3.2).

Definition 4.3.2 (Trace). A trace of a symbolic transition system S =
〈V, I, T 〉 is a finite or infinite sequence π = s0, s1, s2, . . . of states such that
s0 |= I and ∀i≥0si, si+1 |= T . Moreover, the state si with i ≥ 0 of a trace
π = s0, s1, s2, . . . is denoted as π[i], and the assignment to the variable
x ∈ V at the state si is expressed as π[i](x).

An important concept for a symbolic transition system is the reachable
states. Formally defined in 4.3.3, a reachable state is a state that can be
reached by keep applying the transition relation starting from the initial
states.

Definition 4.3.3 (Reachable States). Given a Symbolic Transition System
S = 〈V, I, T 〉, a state s is reachable in S if and only if there exists a
trace π = s0, s1, . . . , s of S. The set of reachable states of S is defined as
Reach(S) = {s |= V | s is a reachable state}. The set Reach(S) can be
symbolically represented with the formula ∨

s∈Reach(S) s. Moreover, if the
set Reach(S) is finite/infinite then S is a finite/infinite states transition
system.

A state without any successor (i.e., next state) is called a deadlock
state. While the semantics of the symbolic transition systems allows for
the definition of a system with deadlocks, in practice this is not desirable
since it moves from a system with infinite to finite traces length. This
aspect has an implication on the techniques that can be used to analyze
the system, however those details are not covered here.
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Definition 4.3.4 (Deadlock-free Symbolic Transition System). A Sym-
bolic Transition System S = 〈V, I, T 〉 is called deadlock-free when for all
traces s0, s1, . . . , sk of S there exists a state sk+1 of S such that sk, sk+1 |= T .

Given a state, namely the current, and applying the transition relation,
we then obtain all states that have distance 1 from the original. Intu-
itively, this concept can be extended in general terms to n unrollings, as
in Definition 4.3.5, to introduce the concept of state distance.

Definition 4.3.5 (States distance). Given a Symbolic Transition System
S = 〈V, I, T 〉, the distance between two reachable states s1 and s2 of S,
namely Dist(S, s1, s2), is the length of the shortest trace π in S such that
π = s1, . . . , s2.

The states distance allows us to introduce the diameter of a symbolic
transition system as in Definition 4.3.6. This concept, particularly im-
portant when analyzing the behavior of a transition system, allows for
distinguish between different classes of transition systems. Intuitively, a
system with a deep diameter requires a significant amount of transition
relation unrollings in order to analyze all possible behaviors. Differently, a
small diameter may implies less effort during the system analysis.

Definition 4.3.6 (System Diameter). Given a Symbolic Transition System
S = 〈V, I, T 〉, the diameter of S is k if ∃s,s′∈Reach(S)Dist(S, s, s′) = k and
∀s,s′∈Reach(S)Dist(S, s, s′) ≤ k

An important class of systems are the combinatorial ones, as defined in
4.3.7. Particularly used in circuits and architecture definition, a combina-
torial system represents a memoryless evolution, whose next states are not
dependent to the current ones. A combinatorial system can be represented
in the framework of a symbolic transition systems as a system with diam-
eter equal to 0, meaning that the reachable states of the system are (only)
defined by the constraints on the initial ones.
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Definition 4.3.7 (Combinatorial System). A Symbolic Transition System
S = 〈V, I, T 〉 is called combinatorial when the diameter of S is 0.

The abstract representation and formalization of a real system, via
symbolic transition system, may require to get composed with other sys-
tems. The composition of two systems can be performed with different
approaches, however in this work we concentrate on synchronous ones.
Definition 4.3.8 introduces the notion of Synchronous Product of Symbolic
Transition Systems, where the resulting system is the conjunction of the
formulas representing both initial states and transition relation. This se-
mantics imposes that each transition has to satisfy both systems interpre-
tation. Other approaches on systems compositions, like the asynchronous
ones, are not considered in this work.

Definition 4.3.8 (Synchronous Product of Symbolic Transition Systems).
Given two Symbolic Transition Systems S ′ = 〈V ′, I ′, T ′〉 and S ′′ = 〈V ′′, I ′′, T ′′〉,
the synchronous product S = 〈V, I, T 〉 of S ′ and S ′′ is a Symbolic Transition
System where V = V ′ ∪ V ′′, I = I ′ ∧ I ′′, and T = T ′ ∧ T ′′.

4.3.2 Linear Temporal Logic

The formal design process of a system is characterized by the definition of
the system itself and a set of expected behaviors e.g., system requirements.
The framework described in this work relies on symbolic transition system
for the system definition, and Linear Temporal Logic for the definition of
the expected behavior.

The Linear Temporal Logic (LTL) is a modal temporal logic that can be
used to encode properties over system traces. The syntax of LTL, defined
in 4.3.9, is quite simple and includes four operators (i.e., X, F, G, and U)
in addition to the pure propositional ones (i.e., ∧, ∨, and ¬).
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Definition 4.3.9 (Syntax of Linear Temporal Logic). LTL formulae over
the set V of variables are formed according with the following grammar:

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Xϕ | Fϕ | Gϕ | ϕ1Uϕ2

where a ∈ V .

The semantics of the LTL is defined in the context of system traces (see
Definition 4.3.10). A part from the propositional operators, the temporal
ones can intuitively described as follows:

• Xϕ or next: ϕ holds in the next state;

• Fϕ or finally: ϕ holds at some point in the future;

• Gϕ or globally: ϕ holds at every points in the future;

• ϕ1Uϕ2 or until: ϕ1 holds for every states until ϕ2 holds.

Definition 4.3.10 (Semantics of Linear Temporal Logic). Given an LTL
formula ϕ and a trace π = s0, s1, s2, . . ., we define that the formula ϕ is
true at an instant i ≥ 0 of π, denoted as π, i |= ϕ, as follows:

• π, i |= a iff π[i] |= a

• π, i |= ¬ϕ iff π, i 6|= ϕ

• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2

• π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2

• π, i |= Xϕ iff π, i+ 1 |= ϕ

• π, i |= Fϕ iff ∃j ≥ i such that π, j |= ϕ

• π, i |= Gϕ iff ∀j ≥ i such that π, j |= ϕ
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• π, i |= ϕ1Uϕ2 iff ∃j ≥ i such that π, j |= ϕ2 and ∀0≤k<j π, k |= ϕ1

The satisfaction relation |= between π and ϕ, in notation π |= ϕ (namely,
π models ϕ), holds if π, 0 |= ϕ holds.

Some patterns of LTL properties are of particular interest. In fact, they
are known to be commonly used when modeling a reactive system. The
main patterns in LTL properties definition can be categorized in one of the
following sets:

• Safety: “a bad condition never happens”, G(¬bad);

• Liveness: “at some point something good happens”, F(good);

• Fairness: “ϕ holds infinitely many times”, G(F(ϕ));

• Invariant: “ϕ holds in every state of the system”, G(ϕ).

4.3.3 Model Checking

The introduction of the formal representation of a system (i.e., STS), and a
property specification language (i.e., LTL properties) calls for an approach
to evaluate whether the first meets the latter. This problem, formally
defined in 4.4.2, is called LTL model checking. More specifically, we want
to check whether all traces of an STS model a given LTL property.

Definition 4.3.11 (LTL Model Checking Problem). Given a Symbolic
Transition System S = 〈V, I, T 〉, and an LTL formula ϕ, the LTL model
checking problem denoted with S |= ϕ is the problem of checking if for all
traces π = s0, s1, . . . of S, π |= ϕ.

An important subset of LTL model checking is the invariant model
checking. This problem consists into evaluating if a given propositional
property holds in every reachable states of a symbolic transition system.
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As defined in 4.3.12, the invariant model checking problem can be defined
as an instance of LTL model checking.

Definition 4.3.12 (Invariant Model Checking Problem). Given a Symbolic
Transition System S = 〈V, I, T 〉, and a propositional logic formula ϕ, the
invariant model checking problem is the LTL model checking problem of
S |= Gϕ.

The reachability problem is the problem of checking whether a particular
condition can be reached by a Symbolic Transition System. Defined in
4.3.13, this problem can be encoded into LTL model checking.

Definition 4.3.13 (Reachability Problem). Given a Symbolic Transition
System S = 〈V, I, T 〉, and a propositional logic formula ϕ, the reachability
problem is the LTL model checking problem of checking S |= Fϕ.

4.3.4 LTL Satisfiability

The definition of a set of formal requirements sometimes need specific eval-
uations in order to assure that they are consistent i.e., not contradictory.
The LTL Satisfiability Problem (Definition 4.3.14) formalizes this concept,
which consists in evaluating whether a single trace can satisfy a given LTL
formula. In practice, this problem can be reduced to model checking by
introducing the concept of the universal model i.e., a model that accepts
any possible trace. More specifically, given an LTL formula ϕ, SAT (ϕ)
holds if and only if U |= ϕ, where U is the universal model.

Definition 4.3.14 (LTL Satisfiability Problem). Given an LTL formula
ϕ, and an LTL formula ϕ, the LTL satisfiability problem denoted with
SAT (ϕ) is the problem of checking if there exists a trace π = s0, s1, . . .

such that π |= ϕ.
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4.4 Symbolic Parameter Synthesis

In some cases, the formal analysis of a system requires more detailed result
than the one provided by standard symbolic model checking. In particular,
a system S might not model a property ϕ (i.e., S 6|= ϕ), but one would be
interested into understanding under which conditions this does not hold.
This is the parametric model checking problem, formally defined in 4.4.2,
it consists of finding the assignments to a given set of parameters (subsets
of the system variables) such that the system models the given property.
The satisfiable assignments are expressed as a formula over the parameters
(also called, the parameters region). More specifically, a configuration of
the parameters belongs to the parameters region if and only if the sys-
tem models the formula ϕ or, at some point, it violates the configuration
assignment of the parameters.

Definition 4.4.1 (LTL Parameter Synthesis Problem). Given a Symbolic
Transition System S = 〈V, I, T 〉, a set of Boolean parameters P ⊆ V , and
an LTL formula ϕ, the LTL parameter synthesis problem denoted with
R(P ) : S |= ϕ is the problem of finding a propositional formula R(P ),
called region, such that for every assignment ρ of P it holds that ρ |= R(P )
iff S |= G(ρ)→ ϕ.

Similarly as in standard Model Checking, a sub class of the LTL param-
eter synthesis problem is its counter part that considers only propositional
properties i.e., invariants. This problem is formalized in Definition 4.4.2.

Definition 4.4.2 (Invariant Parameter Synthesis Problem). Given a Sym-
bolic Transition System S = 〈V, I, T 〉, a set of parameters P ⊆ V , and a
propositional formula ϕ, the invariant parameter synthesis problem is the
LTL parameter synthesis problem R(P ) : S |= G(ϕ).
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4.5 Minimal Cutsets Computation

This Thesis concentrates on the analysis of systems under failure conditions
i.e., when some components do not behave correctly. This analysis, for-
mally defined in 4.5.1, build upon parameter synthesis, namely the Cutsets
Computation. In this case, the parameters are purely Boolean and repre-
sent the occurrence of a system failure. Such parameters are called fault
variables, and linked to a system failure, their semantics expresses that
a fault variable becomes TRUE when a failure has occurred. The result
of a cutset computation is a set of faults configurations whose activation
allows the system to satisfy an unwanted event called Top Level Event. In
a parameter synthesis setting, this can be reduced in the computation of
the negated parameter region that allows the system to not model the Top
Level Event.

In this Thesis we consider also the cutsets computation over an LTL
formula φ (instead of a system S) i.e., CS(φ, ϕ, F ). As for the LTL sat-
isfiability, this problem can be reduced to the cutsets computation over a
symbolic transition system as CS(U , φ ∧ ϕ, F ), where U is the universal
model.

Definition 4.5.1 (LTL Cutsets Computation over STS). Given a Symbolic
Transition System S = 〈V, I, T 〉, a set of Boolean faults F ⊆ V , and an
LTL formula ϕ, whose negation is called Top Level Event, the LTL Cutsets
Computation is the problem of computing the set

CS(S, ϕ, F ) := {FC ∈ 2F | ∃R(F ) s.t. R(F ) : S |= ϕ and
(
∧

f∈FC
(f = >)

∧
f ′∈F\FC

(f ′ = ⊥)) |= ¬R(F )}.

Definition 4.5.2 extends the concept of cutsets computation to invariant
properties. Even if this problem has been defined here as parametric model
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checking over LTL formulas, the original and most common approaches
consider only the invariant case [104, 63, 37].

Definition 4.5.2 (Invariant Cutsets Computation over STS). Given a
Symbolic Transition System S = 〈V, I, T 〉, a set of Boolean faults F ⊆ V ,
and a propositional formula ϕ, which negation is called Top Level Event,
the Invariant Cutsets Computation is the problem of computing the set
CS(S,Gϕ, F ).

In the analysis of system under failure, the fault variables are commonly
assumed to follow a monotonic behavior. Formally defined in 4.5.3, this
condition applies when for every faults configuration in the cutsets also its
supersets belong to the cutsets.

Definition 4.5.3 (Monotonic Faults). Given a Symbolic Transition System
S = 〈V, I, T 〉, a set of Boolean faults F ⊆ V , and a propositional formula
ϕ, called Top Level Event, F in S are called Monotonic iff

∀FC ∈ CS(S, ϕ, F ), {FC ′ ∈ 2F | FC ⊂ FC ′} ⊂ CS(S, ϕ, F ).

Considering only the cutsets that are minimal allows us to reduce the
size of the faults configurations that have to be considered. This concept,
formalized in Definition 4.5.4, is widely used in safety analysis, and it
permits to generate a smallest set of cutsets while preserving the same level
of expressiveness. Moreover, the minimal cutsets computation is usually
applied also even if the fault variables do not follow a monotonic behavior.
In fact, the set of MCS represents an over approximation of the CS (i.e.,
CS ⊆ MCS), and in practice this means that the MCS may express a
“pessimistic” result.

Definition 4.5.4 (Minimal Cutsets Computation). Given a Symbolic Tran-
sition System S = 〈V, I, T 〉, a set of Boolean faults F ⊆ V , and a proposi-
tional formula ϕ, called Top Level Event, the Minimal Cutsets Computation
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is the problem of computing the set

MCS(S, ϕ, F ) = {cs ∈ CS(S, ϕ, F ) | 6 ∃cs′ ∈ CS(S, ϕ, F ), cs′ ⊂ cs}.

The set of Minimal Cutsets is sometimes represented as a formula in
Disjunctive Normal Form. With reference to Definition 4.5.4, the resulting
formula is as follows:

MCS>(S, ϕ, F ) =
∨

FC∈MCS(S,ϕ,F )
(

∧
fc∈FC

fc)

4.6 Fault Trees Representation

A Fault Tree, as described in Section 2.2, is a commonly used syntax to
represent the combination of system faults that can cause the occurrence
of a Top Level Event property. Its standard reprsentation is similar to
a propositional formula over system failures, but without the negation
operator. The Fault Tree definition allows also for labeling sub parts of the
tree, called intermediate events, which is used to describe partial failure
conditions. Definition 4.6.1 introduces the syntax of a Fault Tree.

Definition 4.6.1 (Fault Trees representation). A hierarchically organized
Fault Tree over a set of basic Boolean fault variables BE, and intermediate
events IE is formed according with the following grammar:

FT ::= be | ie 7→ FT | FT ∧ FT | FT ∨ FT

where:

• ie ∈ IE, is a name

• be ∈ BE, is a Boolean fault variable

An important aspect that emerges from Definition 4.6.1, is that a Fault
Tree can be reduced to a propositional formula. This transformation is
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possible by substituting all occurrence of ie 7→ FT into FT , and simply
discharging the intermediate events labeling. Moreover, a computed set of
minimal cutsets can be trivially represented as a Fault Tree (see Defini-
tion 4.6.2), and vice versa (see Definition 4.6.3).

Definition 4.6.2 (Minimal Cutsets as Fault Tree). Given a set of minimal
cutsets MCS, their Fault Tree representation is:

∨
FC∈MCS

(
∧

fc∈FC
fc)

Definition 4.6.3 (Fault Tree as Minimal Cutsets). Given a Fault Tree FT
the resulting set of minimal cutsets is generated by the following function:

µ(FT ) =



{{be}} if FT = be

µ(FT ′) if FT = ie 7→ FT ′

µ(FT ′)× µ(FT ′′) if FT = FT ′ ∧ FT ′′

µ(FT ′) ∪ µ(FT ′′) if FT = FT ′ ∨ FT ′′

4.7 Symbolic Model Checking Techniques

In 1990, the techniques described in [48, 92] introduced the first version of
a BDD-based symbolic model checker for temporal logic. This approach
represented the enabling result for a practical application of model check-
ing techniques. However, BDDs, and more in general the BDD-based
model checking, suffer from an explosion in memory consumption when
the model reaches a considerable size (e.g., in the order of hundreds of
variables). Tools implementing BDD-based CTL and LTL model checking
are NuSMV [52], ABC [45], and SAL [18]

The successive introduction of the Bounded Model Checking (BMC) [24]
represented a possible solution to the issues of BDD-based approaches.
In fact, this approach is much less aggressive, and almost linear, from
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the memory consumption point of view. More specifically, the BMC is a
propositional logic encoding that permits to perform the bounded formal
verification using a SAT solver. The BMC technique provides the possibil-
ity to check whether a property described in LTL logic holds in a model
until a specific bound k. The bound of the verification refers to the evo-
lution steps of the State Machine. This fact imposes that the Bounded
Model Checking can answer to the problem with: i) the property does not
hold, proved by a counterexample trace witnessing the violation; ii) the
property has not been falsified in k steps. The latter result is given when
the model checker is not able to prove that, for the paths of length bigger
than k, the property holds or not.

Recent extensions of BMC allow also for proving the satisfiability of a
subset of LTL, namely the invariant properties. The first relevant work is
based on proving safety properties using k-induction [111] i.e., with base
and induction (with k steps) proofs. The key idea of k-induction consists
in relying on the loop free encoding of the transition relation unrolling. In
particular, this approach avoids visiting new states i.e., equal to the ones
already visited. More specifically, it uses a SAT solver to prove the condi-
tions that, after k unrollings of a loop free path, i) the property cannot be
violated from the initial states, or ii) the property cannot be violated from
any state. When analyzing a finite state system, this technique guarantees
termination.

Successive evolution on SAT-based model checking has been proposed
in [93] with interpolation based techniques. This concept encompasses the
Craig’s interpolants, and they are used to represent an over approximation
of the reachable states. This approach works better, in practice, than the
induction based, due to the fact that it allows for a shortened unfolding of
the transition relation.

More recently, in [43] a SAT-based model checking for safety properties
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has been introduced. This method, called Property Directed Reachability
(PDR) or IC3 (Incremental Construction of Inductive Clauses for Indu-
bitable Correctness), does not require unrolling of the transition relation.
In fact, IC3 operates over an ordered list of k frames that represent an
over approximations of the states reachable in k steps or less. The algo-
rithm can terminate by either providing an inductive invariant as a proof
of satisfiability, or a counterexample to the model checking problem. In
this context, and given a model checking problem S |= ϕ, an inductive
invariant is a propositional formula φ such that i) I |= φ, ii) φ ∧ T |= φ′,
and iii) φ |= ϕ.

SAT-based LTL and safety properties model checking is implemented
by NuSMV2 [51], nuXmv [50], ABC [45], and SAL [18].
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Part II

Symbolic Techniques for Minimal
Cutsets Computation





Introduction

The minimal cutsets computation is the routine on which all model-based
safety assessment techniques, that rely on symbolic model checking, build
upon.

As described in Chapter 2, the model-based safety assessment approach
is based on the definition of a single model representing the system, which
in this case it is described as a symbolic transition system. Applied in
different flavors, the symbolic minimal cutsets computation represents the
most strategic technique whose improvement allows us to push the perfor-
mance of symbolic model-based safety and reliability analysis.

The concept of cutsets, which is strongly related to fault tree analysis,
has been used for decades by safety engineers on safety critical system de-
velopment. However, the growing interests in automated techniques able
to support those analysis exhibited the need for a generally accepted for-
malization. The usage of Binary Decision Diagrams to manipulate fault
trees and efficiently extract minimal cutsets [62, 104] have led to formalize
such operation in terms of prime implicants [105] i.e., the most general
(with less literals) implicants of a formula. Those results, combined with
the increasing efficiency of symbolic model checking techniques, allowed for
the definition of specialized approaches for BDD-based symbolic minimal
cutsets computation on dynamical systems [37, 40].

The introduction of SAT-based model checking [24] and successive inter-
polation based extensions [93] opened up the ability to deal with complex
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problems. Most recently, IC3/PDR [44, 43] technique has demonstrated
to be the most effective to approach industrial problems.

The need for more efficient and effective techniques expressed in the
symbolic model checking field has guided the evolution from BDD-based
verification to IC3/PDR. The same need can be found in symbolic model-
based safety analysis. In this Part we aim to fill this gap, from the BDD-
based approaches proposed in [37] to the most advanced anytime tech-
niques, representing our contribution in this field [30], that build upon
SAT and IC3/PDR based model checking.

The rest of Part II is organized as follows:

• Background

– Chapter 5 elaborates on the techniques used to extend the formal
model in order to describe system failures;

– Chapter 6 describes the BDD-based techniques that represent the
starting point of the work presented here;

• Contributions

– Chapter 7 defines further improvements as adaptations of existing
approaches;

– Chapter 8 introduces the contribution on efficient techniques that
merges scalability efficiency and anytime minimal cutsets genera-
tion;

– Chapter 9 shows a performance comparison between the tech-
niques described in this Part;

– Chapter 10 introduces an extension to manage Top Level Events
defined in Linear Temporal Logic;
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– Chapter 11 concludes with an overview of further extensions.
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5

Formal Model Extension Techniques

The primary aim of the formal validation and verification is to aid the
system development to reduce design flaws, and increase the confidence
that the system follows the intended behavior. The formal safety assess-
ment elaborates on this philosophy by analyzing the system behavior under
failure conditions. In fact, the formal safety assessment is performed down-
stream of the standard formal V&V process.

The formal V&V process, as well as the formal safety assessment, aims
to avoid error-prone approaches by guaranteeing an internal soundness and
correctness i.e., the artifacts are produced in a deterministic way and they
are determined only by model and properties. However, the problem that
occurs when dealing with those techniques is to guarantee the trustworthi-
ness of the input i.e., that model and properties are an effective abstraction
of real system representation and requirements. Similar criticalities char-
acterize also the formal safety assessment, however those issues can be
mitigated with a tight integration between the two processes.

The link between formal V&V and SA is represented by the model ex-
tension. This phase consists of enriching the system components with a
behavior that deviates from the nominal one, which represents how that
component will operate under failure conditions. The selection between
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nominal and faulty behaviors is triggered by a particular variable called
fault event that can be arbitrarily activated or disabled. In the following
sections we firstly provide a formal characterization of the model exten-
sion, and afterwards we discuss the main techniques implementing this
methodology.

5.1 Formal Characterization

As defined in Chapter 4, in this work we model the system as a Symbolic
Transition System (STS). This formalism applies also when describing a
system under failure conditions. In this case a subset of the state variables
are meant to describe whether the state is a failure one or not.

The usual flow of the safety assessment consists in defining a nominal
model and afterwards extending it with faulty behaviors. There are differ-
ent techniques that can be applied in order to extend a model, nevertheless
all of them have to produce a result that is compliant with the definition
of model extension 5.1.1 . More specifically, a model extension enriches a
transition system by adding new (faulty) states and transitions from and to
those states. The important property of an extended model is to guarantee
that, in absence of faults, its behavior is equivalent to the nominal one.
Formally, for every traces of the nominal model there exists an equivalent
trace in the extended one where the fault variables are set to false.

Figure 5.1a shows an example of the system evolution of a nominal
model. In this simple example a light is turned on when generator and
switch are respectively turned on and closed. However, it might be possible
that the generator breaks, thus it does not provide energy even if it is
turned on. This behavior is shown in Figure 5.1b. In this case, the extended
model preserves the nominal behavior, in fact, this transition system is
equivalent to the nominal one when generator failure is assigned to false.
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generator = off &

light = off &

 switch = open

generator = off &

light = off &

 switch = closed

generator = on &

light = off &

 switch = open

generator = on &

light = on &

 switch = closed

(a) Nominal System

generator = off &

light = off &

 switch = open &

 !generator_failure

generator = off &

light = off &

 switch = closed &

 !generator_failure

generator = on &

light = off &

 switch = open &

 !generator_failure

generator = on &

light = off &

 switch = open &

 generator_failure

generator = on &

light = on &

 switch = closed &

 !generator_failure

generator = on &

light = off &

 switch = closed &

 generator_failure

(b) Extended System

Figure 5.1: Transition System Extension Example

Definition 5.1.1 (Extended Model of Symbolic Transition System). Given
a Symbolic Transition System SN = 〈V N , IN , TN〉, called nominal, a Sym-
bolic Transition System SX = 〈V X , IX , TX〉 is an Extended Model of SN

iff i) (V N ∪F ) ⊆ V X , where F are the fault variables, and ii) for all traces
πN in SN , there exists a trace πX in SX such that ∀f∈F (πX [i](f) = ⊥) and
∀i∀v∈V N (πN [i](v) = πX [i](v)).

5.2 Fault Injection

The Fault Injection (FI) approach is a model extension technique that
guarantees by construction that the nominal behavior, under no failure
conditions, is preserved. This approach, developed by the ESACS [42]
and ISAAC [11] projects, is directed to extend the model with behavioral
faults definitions. This approach assumes the system as combination of
components where each of them has input and output ports, and their
relation is defined with a behavioral definition. Each component imple-
menting this approach is called nominal component, as simply represented
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(a) Nominal Component (b) Extended Component

Figure 5.2: Fault Injection Approach

in Figure 5.2a. The application of the fault injection technique, as shown
in Figure 5.2b, consists in the definition of an extended component where:
1) each Faulty Behaviors (or Failure Modes), by preserving the same in-
terface as the nominal one, implements the possible failure effects that
deviate from the nominal behavior. The input to the extended component
is provided to all behaviors, and 2) the outputs are given to a multiplexer.
Its output port is then connected to only one of the inputs, and its directly
linked to the output of the extended component. 3) The input selection,
operated at the multiplexer level, is driven by the Faults Dynamics com-
ponent. Internally it models the transition as a state machine where each
behavior represents a state and only the nominal one is initial. The tran-
sition to a faulty behavior is triggered by a fault event.

The selection of the nominal behavior, in a fault injection setting, im-
plies that the extended component trivially simplifies to the nominal com-
ponent. Thus, this approach guarantees by construction that the nominal
model is preserved.

The extended model definition via Fault Injection allows us to rely on a
set of predefined Failure Modes. In fact, tools like FSAP [40] and xSAP [27]
implement this approach, and provide a set of faulty behaviors like:
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Figure 5.3: Example of a “Stuck at one”
faulty behavior.

Figure 5.4: Example of a faults dynamics.

• stuck at zero, one, false, or true: always provides (respectively) the
value 0, 1, FALSE, or TRUE as output (an example is shown Fig-
ure 5.3);

• inverted: it inverts the input, it is equivalent to the logical gate not;

• random: it gives as output a non deterministic value in a given range.

Figure 5.4 shows an example of Faults Dynamics, in this case the Faulty
Behavior 1 represents a transient fault, because it can be recovered back to
the Nominal Behavior. Moreover, being in Faulty Behavior 1 or Nominal
Behavior states, the triggering of Fault Event 2 enables the Faulty Behavior
2. This latter effect is a permanent fault, because there is no transition
that allows the system to go back to the Nominal Behavior.

The Fault Injection approach is tailored for being applied in a com-
pletely automated fashion. In fact, in the case of FSAP the inputs to this
procedure are i) the nominal model, ii) a list of symbols or variables that
are affected by specific failures, and iii) the faults dynamics for each sym-
bol. The latter two inputs are called Faults Extension Information. The
separation between nominal and extended model is a clear advantage of
this technique, considering that different extensions to the same nominal
model can be applied only by changing the Faults Extension Information.
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However, Fault Injection allows us only to describe failures that affects the
internal behavior of a component, which might be limiting when modeling
failure effects with different nature. An example of such kind of behavior is
a new unintentional interactions between components, like short circuits,
which turns out to be impossible to be described with Fault Injection. In
addition to that, the system modeling that FI assumes does not fit with a
more abstract system definition e.g., requirement based modeling. In fact,
if the nominal behavior is defined as a constraint over a set of variables the
FI will fail of extending it, because it is meant to affects a specific variable
with a specific and localized failure effect.

5.3 Manual Extension

Automated techniques have the advantages of building the extended model
upon the nominal one, and guiding the process to reduce design flaws.
However, as described in the previous Section, those techniques might be
not expressive enough to formalize some kind of system failures.

The most general approach consists in extending the nominal model by
explicitly define the faulty behavior. This approach clearly does not impose
any boundaries on the failure modeling, a part from the expressiveness of
the formalism itself. However, this approach requires more effort, than
fault injection, to guarantee that the model extension did not affect the
nominal behavior i.e., when no failure occurs the two models are trace
equivalent. More specifically, every trace of the nominal model must be a
trace also for the extended model.

However, some specific patterns of (manual) model extension are still
able to guarantee by construction not to affect the nominal behavior. For
instance, the nominal model in SMV language shown in Figure 5.5 repre-
sents part of the formalization of an Air Traffic Control System (ATC). The
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1 MODULE AIR TRAFFIC CONTROL( i n t e n t a c 1 , i n t e n t a c 2 , i n t e n t a c 3 )
2 . . .
3
4 INVAR
5 ALL DIFFERENT( sugg ac 1 , sugg ac 2 , sugg ac 3 , . . . ) ;
6
7 . . .

Figure 5.5: Nominal Model Example

1 MODULE AIR TRAFFIC CONTROL( i n t e n t a c 1 , i n t e n t a c 2 , i n t e n t a c 3 )
2 . . .
3
4 VAR
5 r e s o l u t i o n f a i l u r e : boolean ;
6
7 . . .
8
9 INVAR

10 ! r e s o l u t i o n f a i l u r e −> ALL DIFFERENT( sugg ac 1 , sugg ac 2 , sugg ac 3 , . . . ) ;
11
12 . . .

Figure 5.6: Manual Extension Example

aircraft send the intended routes, as trajectory intents (intent ac 1/2/3 in
the example), to the ATC. Those intentions are taken into account for
defining the response of the ATC (sugg ac 1/2/3 in the example), which
will confirm or reject the requests by suggesting a new route/trajectory.
Such suggested trajectories have to be consistent with a set of constraints,
and one of them is that all suggestions must be different for all aircraft
in order to avoid collisions (line 5 in Figure 5.5). However, the Air Traf-
fic Control might experience problems when resolving the constraints on
suggested routes. This fault effects can be modeled as in Figure 5.6, by
defining a new variable that traces the fault occurrence (resolution failure
in the example), and conditioning the constraint to hold only when such
variable is assigned to FALSE. Once the fault variables are free to be set to
FALSE, this model extension approach guarantees to preserve the nominal
behavior.
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6

Symbolic Fault Tree Analysis

6.1 BDD-based techniques

The symbolic Minimal Cutsets computation is at the core of all techniques
presented in this Thesis, and the BDD-based algorithms described in [37]
represent the starting point of the successive SAT-based improvements.
This Chapter provides an overview of the symbolic techniques algorithms
for performing fault tree analysis, as minimal cutsets computation, using
BDDs.

6.1.1 Forward Pruning

The Forward Pruning algorithms is based on a reachability analysis on
the symbolic transition system. This approach, described in Algorithm 1,
takes as input a modelM (represented as a symbolic transition system with
initial state I and transition relation T ), a Top Level Event TLE, and a set
of faults F . The result of this algorithm is a formula over F representing
the Minimal Cutsets. As described in Chapter 4, a faults combination
FC is a cutset if and only if there exists a trace that triggers all faults of
FC and it is a counterexample of TLE. The temporal occurrence of the
faults in FC is irrelevant, and all their combinations are considered valid.
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In order to cover this aspect, the Forward Pruning algorithm defines a
monitor ofi (meaning “once fi”) for each fault variable fi, and all of them
are collected into the transition relation T o (line 1 of Algorithm 1). The
modelM is then extended in line 2 by substituting the transition relation
T with the synchronous products between T and T o. The rest of the
algorithm, without the Pruning optimization, is pretty straightforward. In
fact, once the set of the reachable states is computed a projection (line 14)
is performed over the once variables. The result of this operation is the set
of Cutsets. The last operation maps back the once variables to the actual
faults variables.

The pruning approach, defined by the Pruning condition in Algorithm 1,
consists in optimizing the computation of the frontier (i.e., the new reach-
able states discovered with one transition relation unrolling) by considering
the nature of the CS. More specifically, the Widen function collects all the
states that include any element in CS as a proper subset. This needs to
update CS in each iteration of the forward image computation, and in
general allows for a significant reduction of the search space.

6.1.2 Backward with Dynamic COI

Another approach presented in [37] is the one called Backward with dy-
namic COI. This techniques builds upon a standard backward reachability
that resembles the basic forward search without pruning, in fact it first
builds the set of all reachable states, and afterwards projects and minimize
CS. The difference of applying a backward search consists in using guess
variables instead of once (they are actually dual of each other).

The Backward with Dynamic Cone Of Influence algorithm is presented
in 2. In symbolic minimal cutsets computation, the TLE might be defined
over a subset of the variables ofM, thus covering only part of the transition
relation. In this case the DCOI is able to prune the backward image
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Algorithm 1: MCS-BDD Forward-Pruning
Input: Model (M = 〈I, T 〉), Top level event (TLE), Faults (F )
Result: MCS

1 T o := Once(F );
2 M := Extend(M, T o);
3 Reach := I ∩ (∀i(ofi = fi));
4 Front := I ∩ (∀i(ofi = fi));
5 while Front 6= ∅ do
6 if Pruning then
7 CSo := CSo ∪ Proj(o, Reach ∩ TLE); // With pruning

8 Tmp := Reach;
9 Reach := Reach ∪ fwd img(M, Front);

10 Front := Reach \ Tmp;
11 if Pruning then
12 Front := Front \ Widen(CSo); // With pruning

13 if ¬ Pruning then
14 CSo := Proj(o, Reach ∩ TLE); // Without pruning

15 MCSo := Minimize(CSo);
16 return Mapo→f (MCSo)

construction in order to consider only the variables that relates with the
TLE. This operation is performed by the dcoi get routine in line 8.

Forward search with pruning and Backward with Dynamic COI are the
most efficient BDD-based techniques for Minimal Cutsets computation.
The advantage of one compared to the other relates to the nature of the
TLE. In fact, backward with DCOI approach is preferable when the TLE
is defined over a (significant small) subset of the model variables, for all
the other cases the forward search performs better.
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Algorithm 2: MCS-BDD Backward-DCOI
Input: Model (M = 〈I, T 〉), Top level event (TLE), Faults (F )
Result: MCS

1 T g := Guess(F );
2 M := Extend(M, T g);
3 Reach := TLE ∩ (g = f);
4 Front := TLE ∩ (g = f);
5 i := 0;
6 while Front 6= ∅ do
7 Tmp := Reach;
8 Mi := dcoi get(M, TLE, i);
9 Reach := Reach ∪ bwd img(Mi, Front);

10 Front := Reach \ Tmp;
11 i := i+ 1;

12 CSg := Proj(g, Reach ∩ I);
13 MCSg := Minimize(CSg);
14 return Mapg→f (MCSg)

6.2 Computing Fault Trees Probability

Particularly important in Safety Assessment is the evaluation of the prob-
ability of leading to an undesired condition. This computation can be
performed from the results of the Fault Tree Analysis i.e., the Fault Tree.
In particular, given a Fault Tree and a mapping P that links each basic
event to its probability of occurrence, it is possible to compute the over-
all probability of leading to the top-level event. In general, that quantity
expresses the probability that the event occurs in a time span of 1 hour
of operation, assuming a uniform distribution. Each event is considered
independent from the others i.e., two events A and B are independent iff
P (A ∩B) = P (A)P (B). Specific techniques for the case of common cause
analysis are not considered in this work.

According to those assumptions, representing a Fault Tree as a set of
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Algorithm 3: Probability computation.
Input: BDD (n), Probability map (P), Hashtable (cache)
Result: Probability

1 if n in cache then
2 return cache[n];

3 if n = > then
4 return 1.0 ;

5 if n = ⊥ then
6 return 0.0 ;

7 pthen = Probability computation(get then node(n), P , cache);
8 pelse = Probability computation(get else node(n), P , cache);
9 pcur = P(get var(n));

10 cache[n] = pcur · pthen + (1.0− pcur) · pelse;
11 return cache[n];

Minimal Cutsets MCS (defined in Chapter 4), the probability of a single
fault configuration FC ∈MCS is given by the product of the probabilities
of its basic faults:

P(FC) =
∏

f∈FC
P(f).

For a set of minimal cutsets S = S1 ∪S2, the probability can be computed
using the above and the following recursive formula:

P(S1 ∪ S2) = P(S1) + P(S2)− P(S1 ∩ S2).

Implementation of the probability computation

Interpreting the Fault Tree as a propositional formula, and representing it
as Binary Decision Diagram, is a simple and efficient way of computing its
probability. The algorithm, shown in 3, exploits the following facts:

(i) the probability of two disjoint sets is simply the sum of the two prob-
abilities; and
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(ii) the two children t and e of a BDD node with variable v correspond to
the two disjoint sets of assignments for the formulae v ∧ t and ¬v ∧ e
respectively;

(iii) if the variable v does not occur in the formula f , then f is independent
from v, and so P(v ∧ f) = P(v) · P(f);

(iv) P(¬v) = 1− P(v) by definition.
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Adaptation of Existing Techniques

The BDD-based approach for formal verification suffers from scalability
issues when increasing the state space. The BDD-based Minimal Cutsets
computation is based on the same techniques, thus it exhibits the same
drawbacks. The advances in symbolic model checking by relying on SAT-
based techniques allowed to overcome those limitations. In this Chapter
we analyze the existing techniques that can be exploited in order to reach
better performance, both by integrating the BMC-based algorithms, and
reducing the MCS computation to parameter synthesis.

7.1 Exploiting BMC

An improved version of the BDD-based routines is presented in [32], by
exploiting Bounded Model Checking (BMC) as a preprocessing step. Es-
sentially, the idea is to run BMC up to a maximum (user-defined) depth k
to check the invariant property stating that the top level event can never
be reached. Whenever a counterexample trace is found, a cut set cs (not
necessarily minimal) is extracted from it, and the model is strengthened
with constraints excluding all the supersets of cs. When no more coun-
terexamples of length (at most) k are found, a BDD-based algorithm is
invoked on the strengthened model, in order to discover the remaining cut

65



7. ADAPTATION OF EXISTING TECHNIQUES

sets not yet covered.
The approach can be generalized to completely avoid the use of BDDs.

The idea is to use the BMC engine incrementally to enumerate cut sets,
and combine it with a generic “black box” procedure for checking invariant
properties, invoked periodically (e.g. before increasing the BMC bound k)
to check whether all the MCSs have been enumerated.

7.2 MCS via parameter synthesis

The work in [55] presents an efficient extension of the IC3 algorithm (called
ParamIC3) that allows us to compute, given a model M depending on some
parameters P , the set of all values of P such that the model satisfies a given
invariant property. The algorithm works by complement, constructing the
set of “good” parameters by incrementally blocking “bad” assignments ex-
tracted from counterexample traces generated by IC3.

The technique can be immediately exploited also for MCS computa-
tion as follows. First, the model is extended with history variables for
fault events, as in the BDD case. The parameter synthesis algorithm is
then invoked on the extended model, considering the history variables as
parameters, and checking the property that the top level event is never
triggered. Each “bad” assignment blocked by ParamIC3 (see [55]) corre-
sponds to a fault configuration reaching the top level event. When the
algorithm terminates, the MCS set can be extracted by simply dropping
the subsumed bad assignments.
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Efficient Anytime Techniques

The practical application of model-based safety assessment in an industrial
setting poses two key problems. The first one is scalability. In addition
to the sheer size of the models, a specific factor is the possibly huge num-
ber of relevant MCSs, corresponding to different fault combinations. The
second problem is to support the state of the practice. In manual safety
analysis, the exploration often proceeds according to the importance and
likelihood of fault configurations: MCSs of lower cardinality, that are typ-
ically associated with higher probability, are explored before the ones with
higher cardinality. When the analysis is considered to be sufficiently thor-
ough, over-approximation techniques are used to assess the weight of the
unexplored MCSs.

The work on IC3-based parameter synthesis [55] can in principle address
the problem of Minimal Cutsets computation. Here we propose several
enhancements based on the specific features of the problem, with dramatic
improvements in terms of scalability.

In this Chapter, we investigate and evaluate a family of efficient algo-
rithms for safety analysis. We work under the monotonicity assumption,
commonly adopted in safety analysis, that an additional fault can not pre-
vent the violation of the property. We specialize IC3-based routines for
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parameter synthesis by optimizing the generalization of counterexamples,
and by ordering the exploration of MCSs based on increasing cardinal-
ity. We also propose a way to accelerate convergence by exploiting the
inductive invariants built by IC3.

The practical applicability of our approach is enhanced by proposing a
method to precisely compute the under- and over-approximated probability
of failure. This technique produces an increasingly precise estimation as the
discovery of MCSs proceeds, with the advantage of providing an “anytime”
algorithm.

8.1 Efficient algorithms for MCS computation

In practice, the BDD-based routines described in Chapter 6 show rather
poor scalability, and are typically not applicable to problems of realistic
size. Using BMC as a preprocessing step helps significantly, but ultimately
also this technique is limited by the scalability problems of BDD-based
approaches. The technique of [55], being based on the very-efficient IC3
algorithm, is much more promising. However, in the basic formulation
given in the previous Chapter, its performance is extremely poor when
the number of possible fault configurations leading to the top level event
is large. In this Chapter, we show how the situation can be dramatically
improved by exploiting the monotonicity assumption on faults under which
we are operating.

8.1.1 Monotonic parameter synthesis

The first (trivial) improvement exploits the definition of monotonicity to
generalize the set of “bad” parameters to be blocked whenever IC3 gener-
ates a counterexample trace. This idea is similar to the dynamic pruning
optimization for the BDD-based computation. The monotonicity assump-
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tion ensures that if a set of faults F is sufficient to generate the top level
event, so does any set S ⊇ F . Therefore, any assignment to the (parame-
ters corresponding to the) fault variables γ = {fj, . . . , fk}∪{¬fi, . . . ,¬fh}
extracted from an IC3 counterexample trace can be immediately general-
ized to γ′ = {fj, . . . , fk}, by dropping all the variables assigned to false.

The above optimization prevents the algorithm from explicitly consid-
ering all cut sets that are subsumed by the one just found, i.e. F =
{fj, . . . , fk}. However, F itself might not be minimal. In this case, IC3
would later have to find another configuration G ⊂ F , and the effort spent
in blocking F would have been wasted.

We address this by modifying the branching heuristic of the SAT solver
used by IC3. In the modified heuristic, (SAT variables corresponding to)
faults are initially assigned to false, and they have higher priority than the
other variables, so that no other variable is assigned by a SAT decision
before all the fault variables are assigned. This ensures that fault variables
are assigned to true only when necessary to satisfy the constraints.

The above idea is very simple to implement and integrate in the IC3-
based algorithm (in total, it requires about 20 lines of code), and it provides
a significant performance boost (as we will show in Chapter 9). However, it
is still not sufficient to ensure that no redundant cut sets are generated. The
reason is that, by the nature of IC3, ParamIC3 enumerates counterexample
traces in an increasing order of length k, so that it only considers traces of
length k+1 when all the traces of length ≤ k have already been excluded.1

This means that, if the shortest trace that leads to the top level event from
a set F of faults is k, but there exists another set of faults S ⊃ F that leads
to the top level event in h < k steps, then S will necessarily be blocked by

1For readers familiar with IC3, strictly speaking this is not fully accurate: if the IC3 implementation
uses a priority queue for managing counterexamples to induction [43], some counterexamples of length
h > k may be generated before all those of length ≤ k are blocked. However, the argument still holds in
this case, so the issue can be ignored for simplicity.
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ParamIC3 before F . In some extreme cases, this might make the heuristic
completely ineffective.

8.1.2 Enumerating only MCS

Algorithm 4: Basic MCS enumeration with ParamIC3
Input: Model (M = 〈I, T 〉), Top level event (TLE), Faults (F )
Result: MCS

1 bound = 1;
2 MCS = ⊥;
3 while True do
4 c = make atmost(F , bound);
5 region = ParamIC3(I ∧ ¬ MCS, T ∧ ¬ MCS, (¬TLE ∨ ¬c), F );
6 MCS = MCS ∨ ¬ region;
7 done = IC3(I ∧ ¬ MCS, T ∧ ¬ MCS, ¬TLE);
8 if done then
9 return MCS

10 else
11 bound = bound + 1;

We address the problem by incorporating in our algorithm a solution
originally proposed in [3]. The idea is to force the algorithm to proceed
by layering, by forcing the search to compute the cuts sets of increasing
cardinality, instead of analyzing traces of increasing length. The pseudo-
code for the basic version is shown in Algorithm 4. At each iteration of
the main loop, the algorithm uses an “atmost” constraint c to limit the
cardinality of the cut sets generated, by relaxing the invariant property to
check from ¬TLE to (¬TLE ∨ ¬c). The termination check is performed
by invoking the “regular” version of IC3 on the model strengthened to
exclude the already-computed cut sets, to check whether there are other
fault configurations that can reach the top level event. It is easy to see that
Algorithm 4 enumerates only the MCSs, and thus it avoids the exponential
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blow-up suffered from ParamIC3 on the model of Example 8.1.1. However,
it does so at a significant price, since it needs two IC3 calls per iteration. On
less pathological examples, the overhead introduced might largely outweigh
the potential benefits.

Algorithm 4 can be improved by exploiting the capability of IC3 (and so
also of ParamIC3) of generating a proof for verified properties in the form
of an inductive invariant entailing the property P . In our specific case,
the inductive invariant ψ produced by ParamIC3 on line 5 of Algorithm 4
would satisfy the following: (i) I ∧ ¬MCS ∧ region |= ψ; (ii) ψ ∧ T ∧
¬MCS∧region |= ψ′; and (iii) ψ∧¬MCS∧region |= (¬TLE∨¬c). The first
improvement is based on the observation that the inductive invariant can be
fed back to ParamIC3 at the next iteration of the main loop, thus avoiding
the need of restarting the search from scratch. The second improvement,
instead, exploits the computed invariant to check whether all the MCSs
have been enumerated, thus avoiding the second invocation of IC3 of line
7. This is done by checking with a SAT solver whether the current invariant
ψ is strong enough to prove that the top level event cannot be reached by
any fault configuration not covered by the already-computed cut sets. Note
that this does not affect completeness, since in the worst case the atmost
constraints simplifies to true after |F | iterations of the loop. However, the
hope is that in practice the inductive invariant will allow us to exit the loop
much earlier. The enhanced algorithm is shown in Algorithm 5, where the
improvements are displayed in red.

Example 8.1.1. Consider the following example, using the syntax of
nuXmv.
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1 MODULE main
2 IVAR
3 f a u l t 1 : boolean ;
4 . . .
5 f a u l t N : boolean ;
6
7 DEFINE f a u l t c o u n t := f a u l t 1 + . . . + f a u l t N ;
8
9 VAR c o u n t e r : 1 . . N;

10 s t a t u s : boolean ;
11
12 ASSIGN
13 i n i t ( c o u n t e r ) := 1 ;
14 next ( c o u n t e r ) := c o u n t e r = N ? 1 : c o u n t e r + 1 ;
15
16 TRANS ( f a u l t c o u n t = 0) | ( f a u l t c o u n t > (N − c o u n t e r ) ) ;
17
18 ASSIGN
19 i n i t ( s t a t u s ) := TRUE ;
20 next ( s t a t u s ) := ( f a u l t c o u n t = 0 ) ;

There are N fault variables, and suppose the top level event occurs when
the status variable becomes false, i.e., whenever at least one fault occurs.
Therefore, the MCSs for this model are the N singleton sets containing
one fault variable each. However, the TRANS constraint forces an inverse
dependency between the number of steps to reach the top level event and
the cardinality of the smallest cut sets needed: for k steps, the smallest cut
sets have cardinality N − k, and there are

(
N
k

)
of them. Therefore, even

with the branching heuristic described above, ParamIC3 will generate an
exponential number of counterexamples (since ∑N

k=1
(
N
k

)
= 2N − 1) before

finding the MCSs. �

8.2 Anytime approximation

An additional benefit of Algorithm 5 compared to the other algorithms is
that it provides an “anytime” approximation behaviour on the set of MCSs,
in the sense that at any point during its execution, the candidate solution
is a subset of all the MCSs. As pointed out in Chapter 2, however, such
underapproximation is useful only if it is possible to estimate its error in
terms of failure probability. Here, we show a simple but effective procedure
for estimating the approximation error on the fly, during the execution
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Algorithm 5: Enhanced MCS enumeration with ParamIC3
Input: Model (M = 〈I, T 〉), Top level event (TLE), Faults (F )
Result: MCS

1 bound = 1;
2 MCS = ⊥;
3 invar = >;
4 while True do
5 c = make atmost(F , bound);
6 region, invar = ParamIC3(I ∧ ¬ MCS ∧ invar, T ∧ ¬ MCS ∧ invar,

(¬TLE ∨ ¬c), F );
7 MCS = MCS ∨ ¬ region;
8 done = check unsat(¬ MCS ∧ invar ∧ TLE);
9 if done then

10 return MCS
11 else
12 bound = bound + 1;

of Algorithm 5. This allows us to consider a bound on the error as an
alternative stopping criterion for the algorithm, which might be useful in
cases when the full computation of all the MCSs would be too expensive.

The idea is to keep two running bounds for the probability x of reaching
the top-level event, such that at any point in the execution of the algorithm
PL(TLE) ≤ x ≤ PU(TLE). Initially, we set PL(TLE) = 0 and PU(TLE) =
1. When a minimal cut set m1 is found, PL(TLE) is incremented by
computing the probability of the fault configurations represented by m1

that are not covered by the already-computed MCSs. This can be done by
constructing the BDD for the formula m1 ∧ ¬MCS, and then computing
its probability with Algorithm 3.2

For updating the upper bound PU(TLE), instead, we exploit fact that
Algorithm 5 proceeds by layers of increasing cardinality. More precisely,

2For performance reasons, it might make sense to perform this computation for clusters of cut sets
rather than for individual ones, trading granularity for efficiency.
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Figure 8.1: Illustration of the probability
error estimation in Algorithm 5.

Figure 8.2: Example of evolution of proba-
bility error bounds.

when ParamIC3 returns at line 7, we know that all the fault configurations
of cardinality smaller or equal to the current bound that are not included in
MCS will definitely not cause the top-level event. The probability Pexcluded

of these configurations can be computed with Algorithm 3 by constructing
the BDD for the formula ¬make atmost(~F , bound) ∧ ¬MCS. With this,
the new value of PU(TLE) is given by 1 − Pexcluded. An illustration of
this idea is shown in Figure 8.1. The red area represents the minimal cut
sets found within a specific cardinality, and the blue one shows all the
supersets of those cut sets. The white area denotes the configurations that
cannot cause the TLE, whereas the gray one represents the unknown part.
Figure 8.2 shows instead an example of the evolution of the error bounds
during the execution of Algorithm 5 for one instance of our benchmark
set: PL(TLE) becomes non-zero after the first cut set found, and then
grows continuously at every cut set, whereas PU(TLE) decreases in steps,
whenever an individual cardinality has been fully explored.
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Experimental Evaluation

We have implemented the algorithms described in the previous sections in
the xSAP, which is model-based safety analysis platform. In this Section,
we experimentally evaluate their performance and effectiveness.

9.1 Benchmarks

The benchmarks used for the evaluation come from a set of real-world test
cases from the avionics domain, where safety assessment and Fault Tree
Analysis are parts of the formal analysis of the models.

9.1.1 Aircraft Electrical System.

The first set of benchmarks describes the architecture of an aircraft-oriented
electrical system. These problems were developed as part of the MISSA
project [94], and previously analyzed using OCAS, a proprietary model-
based safety assessment platform, as well as the FSAP [40] toolset. This
comparison is described in [32]. This family of benchmarks is composed
of four different models, where each of them is a refinement of the previ-
ous one. The properties that are taken into account describe the situation
when the system that manages the alternate/continuous current is mal-
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functioning. Each model has two properties, for a total of 8 benchmark
instances. The size of the models varies from 35 to 297 state variables and
from 437 to 14030 AND gates (in an And-Inverter-Graph representation
[26] of the transition relation), whereas the number of faults is between 9
and 105.

9.1.2 Next-gen collision avoidance.

The second set of instances comes from the analysis of a novel, “next
generation” air traffic control system that is being studied at NASA, and
described in detail in Chapter 29. Part of the activities involves the eval-
uation of different technological approaches in order to discover the safer
and most efficient one. This process is supported by different analysis tech-
niques, and one of those is based on formal model-based safety assessment.
The formal model is composed of an on-ground Air Traffic Control System
(ATC), a set of aircraft that rely on ground-based separation systems like
the ATC (GSEP), and a set of aircraft that have self-separating capabilities
(SSEP) as support of the standard ground-based approach.

The benchmark instances encode different architectural solutions for the
Next-gen collision avoidance system. The system is composed of various
numbers of GSEP and SSEP aircraft, and one ATC. The models contain 47
basic faults, and the objective is to compute the MCSs for the violation of
the property “Two Aircraft shall not have a Loss of Separation”, meaning
that the distance between two aircraft is below a certain safety limit. The
models are scaled by varying the number of aircraft of each kind (GSEP and
SSEP, from 0 to 3 each) and the number communication rounds between
each aircraft and the ATC (from 1 to 10). The size of the models varies
from 162 to 330 state variables and from 1700 to 5110 AND gates.
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9.1.3 Wheel Braking System.

The third family of benchmarks models an aircraft-based wheel braking
system (WBS), described in the Aerospace Information Report, version
6110 [109]. The model was developed in a joint project between FBK and
the Boeing Company [36], and it is representative of an industrial system
of significant size. Further details about this case study are discussed
in Chapter 31. The WBS describes a redundant architecture that takes
as input the pedal information (the brake signal coming from the pilot),
computes the braking force that has to be applied to the 8 wheels, and
drives the hydraulic system in order to physically operate the right braking
force. This system is characterized by three redundant sub units:

(i) normal brake system, receiving the pedal information and driving the
hydraulic system. This unit is composed of two sub components that
work in parallel in order to prevent that a single failure can cause the
complete malfunctioning;

(ii) alternate brake system, receiving the pedal information and the out-
put from the normal brake system: when the latter one is not op-
erating as expected, it operates as backup by driving the hydraulic
system;

(iii) emergency brake system, behaving similarly to the alternate one: it
receives pedal information and both outputs from the normal and
alternate sub systems, and operates as a backup of the alternate one.

The benchmark set consists of 4 different variants of the WBS archi-
tecture, expressing various kinds of faulty behaviour. The models contain
261 fault variables and 1482 state variables, whereas the number of AND
gates varies between 35182 and 35975.
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9.2 Performance evaluation

In the first part of our analysis, we evaluate the performance of differ-
ent techniques for the computation of the set of MCSs. We consider the
following algorithms:

BDD is the procedure of [37] described in Chapter 6;

BMC+BDD is the enhancement of [32] that uses BMC as a preproces-
sor. The BMC implementation uses the branching heuristic described
in Section 8.1 for reducing the number of fault configurations to enu-
merate;

BMC+IC3 is the variant of the previous technique outlined in Chap-
ter 6, using IC3 as a “black box” invariant checking procedure. (The
branching heuristic of Section 8.1 for fault variables is used also in
this case);

ParamIC3 is a basic version of ParamIC3, exploiting monotonicity for
generalizing parameter regions to block;

ParamIC3+faultbranch is the enhanced version of ParamIC3 that uses
the branching heuristic for fault variables of Section 8.1;

MCS-ParamIC3-simple is the basic MCS procedure described in of Al-
gorithm 4. We use m-cardinality networks [4] for encoding the cardi-
nality constraints;

MCS-ParamIC3 is the enhanced MCS procedure of Algorithm 5;

MCS-BMC+IC3 is an anytime variant of BMC+IC3, in which the BMC
solver is forced to enumerate only MCSs, using cardinality constraints:
whenever IC3 finds that a given cardinality has been fully enumerated,
the bound of the atmost constraint is increased, and BMC is restarted;
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MCS-BMC+IC3-sweep is a variant of the above, in which IC3 is in-
voked less frequently and BMC is limited to a maximum counterexam-
ple length k, instead of fully enumerating a given cardinality. This is
expected to improve performance, at the price of losing the “anytime”
feature. Intuitively, instead of analyzing the possible dimensions in
sequence (i.e., first consuming all MCS cardinalities, then all BMC
k), it proceeds “diagonally” by alternating them.

We have run our experiments on a cluster of Linux machines with
2.5GHz Intel Xeon E5420 CPUs, using a timeout of 1 hour and a memory
limit of 4Gb. The results are shown in Figure 9.1. The plots show the
number of solved instances (y-axis) in the given timeout (x-axis) for each
of the algorithms considered. More information is provided in Table 9.1,
where for each configuration we show the number of solved instances and
the total execution time (excluding timeouts).

From the results, we can clearly see the benefits of the techniques dis-
cussed in Section 8.1. Using the specialized branching heuristic, ParamIC3+
faultbranch performs very well in general, especially on the Elec.Sys and
NextGen families. However, for the harder WBS instances, the heuristic is
not enough. On the contrary, the cardinality-based enumeration introduces
an overhead for easier problems, but it pays off for harder ones, making
MCS-ParamIC3 the best performing overall. Moreover, even for simpler
problems the integrated approach of Algorithm 5 is not very far from the
performance of ParamIC3+faultbranch. More importantly, the anytime
behaviour of MCS-ParamIC3 is extremely useful in all cases in which none
of the algorithms terminates, i.e. in the majority of the WBS instances.
Its usefulness is evaluated in Section 9.3.
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All instances. Elec.Sys instances.

NextGen instances. WBS instances.

Figure 9.1: Results of performance evaluation.

9.3 Error estimation

In order to assess the usefulness of the anytime behaviour, we evaluate the
effectiveness of our technique for estimating error bounds on the probability
of faults. For this, we consider the instances of the WBS benchmark set
that could not be completed within the timeout, and for each of them
we study the evolution of the probability bounds during the execution of
MCS-ParamIC3. The results are summarized in Table 9.2, where we show
the number of MCSs found of each cardinality, as well as the evolution of
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Table 9.1: Summary of scalability evaluation.

Algorithm
# solved

Total Time (sec)
All Elec.Sys NextGen WBS

MCS-ParamIC3 72 8 58 6 7837
MCS-ParamIC3-simple 72 8 58 6 19326
ParamIC3+faultbranch 70 8 58 4 3222
MCS-BMC+IC3-sweep 68 6 58 4 9896
MCS-BMC+IC3 67 6 57 4 23210
BMC+IC3 64 6 58 0 5477
ParamIC3 56 8 48 0 6787
BMC+BDD 10 5 5 0 10753
BDD 5 5 0 0 3377

the probability bounds during the execution for a representative subset of
the WBS instances (we could not include all instances for lack of space).

From the table, we can see how for most instances error bounds converge
quickly towards the actual fault probability, and then continue improving
very slowly, confirming the intuition of safety engineers that it is often
enough to consider only MCSs of small cardinality in practice. There is
only one case where the bounds are very loose, namely the M1-S18-WBS-
R-323 instance. However, in this case the fault probability is several order
of magnitudes smaller than for the other properties.

We remark that the probabilities for the basic faults are not artificially
generated; on the contrary, they have been estimated by domain experts,
and the error bounds that we have obtained matched their expectations.
The table shows that, for these problems, the error estimation provided by
our technique is precise enough to make our results useful in practice even
when the computation of the set of MCSs does not terminate.
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Table 9.2: Evolution of probability error bounds on hard WBS instances.

Instance card # MCS Time PL(TLE) PU (TLE)
M1-S18-WBS-R-0321 2 6 3.686 4.4999799997e-10 4.7856862743e-09

3 627 27.937 4.5052040749e-10 4.5368234398e-10
4 629 96.760 4.5052047798e-10 4.5052230781e-10
5* 38950 3549.163 4.5052047798e-10 4.5052230781e-10

M1-S18-WBS-R-0322-left 1 2 1.809 9.9999750001e-06 1.4392898712e-05
2 2 3.827 1.0000324995e-05 1.0004616980e-05
3 203 23.106 1.0000325102e-05 1.0000328223e-05
4* 46287 3271.215 1.0000325102e-05 1.0000328223e-05

M1-S18-WBS-R-0323 6 13689 480.034 1.0696143952e-28 3.5789505917e-22
7* 52035 3596.097 1.0701599223e-28 3.5789505917e-22

M1-S18-WBS-R-0324 2 1 3.603 2.5000000000e-11 4.3619410877e-09
4 2 9.273 2.5000000001e-11 2.5001833724e-11
5 8729 360.012 2.5000000003e-11 2.5000000881e-11
6* 23995 2905.057 2.5000000003e-11 2.5000000881e-11

M1-cmd implies braking w1 1 13 4.508 1.1299483157e-04 1.1708790375e-04
2 30 12.944 1.1299924596e-04 1.1300309322e-04
3 7428 265.771 1.1299925205e-04 1.1299925473e-04
4 3815 865.818 1.1299925205e-04 1.1299925205e-04
5 1768 1956.225 1.1299925205e-04 1.1299925205e-04
6 168 3465.792 1.1299925205e-04 1.1299925205e-04

M2-S18-WBS-R-0321 2 6 3.772 4.4999799997e-10 4.7856862743e-09
3 1252 47.248 4.5075536751e-10 4.5391665924e-10
4 629 113.151 4.5075543799e-10 4.5075726695e-10
5* 30977 3379.841 4.5075543800e-10 4.5075726695e-10

M2-S18-WBS-R-0322-left 1 2 1.855 9.9999750001e-06 1.4392898712e-05
2 2 4.071 1.0000324995e-05 1.0004616980e-05
3 732 40.776 1.0000325300e-05 1.0000328420e-05
4* 47583 3070.011 1.0000325300e-05 1.0000328420e-05

M2-S18-WBS-R-0323 6 13689 470.905 1.0696143952e-28 3.5789505917e-22
7* 53241 3577.552 1.0701693234e-28 3.5789505917e-22

M2-S18-WBS-R-0324 2 1 3.160 2.5000000000e-11 4.3619410877e-09
4 38 11.297 2.5000000077e-11 2.5001833799e-11
5 10859 524.662 2.5000000079e-11 2.5000000958e-11
6* 26943 3458.824 2.5000000079e-11 2.5000000958e-11

*: cardinalities for which not all the MCSs could be computed within the timeout
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10

Top Level Event as LTL property

The definition of system requirements as invariant properties is often too
limiting when analyzing a complex system. This requires reliance on tech-
niques and tools implementing the support for richer formal specifications
such as Linear Temporal Logic.

The support for full LTL model checking is already implemented in a va-
riety of tools (see Section 4.7), however no techniques has been introduced
in order to support, in model-based safety analysis, the definition of top
level events as LTL properties. In the formal validation, verification, and
safety assessment process, the top level events usually represent a negation
of a verification property. “A brake command implies that the aircraft will
eventually stop” is a typical fairness LTL property that is supposed to be
met in the nominal model, whose negation represent a top level event.

In this Chapter we introduce an extension of the invariant based tech-
niques, discussed earlier in this Part, in order to support fault tree analysis
with LTL properties as TLE.

10.1 Infinite Traces

The result of the problem S |= ϕ is either positive, or a witness trace
π of S such that π 6|= ϕ. In case of a safety or invariant property the
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trace π can be finite, where its last state is actually violating the invariant
condition. Therefore, a trace that does not model a liveness property
should be infinite, in fact π = s0, s1, . . . 6|= F(good) only when the condition
∀i≥0si 6|= good holds. In practice, an infinite trace is usually represented as a
finite trace π = s0, s1, . . . , sn where there exists a 0 ≥ k < n such that sn =
sk. This representation is called lasso shaped, due to the fact that the last
state of the trace is “bend” to coincide to one in the middle. Thus, a lasso
shaped trace π = s0, s1, . . . , sk, sk+1 . . . , sn, where sk = sn, represents the
infinite trace π = s0, s1, . . . , sk, (sk+1 . . . , sn)∗ where sk+1 . . . , sn is repeated
infinite many times.

The symbolic fault tree analysis, based on symbolic model checking, can
be seen as the problem of finding all faults configurations fc ∈ FC such
that there exists a trace that triggers those faults and not models the TLE
property. This applies independently from the fact that the trace is finite
of infinite. However, the probability computation over the resulting fault
tree might be not correctly represented. This applies when computing
the probability of a minimal cutset that appears in the model only in
the repeated part of an infinite (lasso shaped) trace. In fact, the actual
probability of such cutsets cs is ∼ 0 (i.e., ∏∞0 P(cs) = 0 given 0 ≥ cs < 1),
but it will counted as P(cs). The resulting computed probability is thus
an over approximation of the actual one, which is considered reasonable in
safety assessment, because it does not mask relevant faults configurations.

10.2 BMC-based approaches

One possible approach to solve this problem can be based on LTL model
checking via Bounded Model Checking [24]. In particular, it is possible
to proceed iteratively for each witness trace as a counter example of the
model checking, and blocking each fault configuration fc at every step i.e.,
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extending the property ϕ := ϕ ∨ F(fc). Practical improvements of this
approach integrate the branching heuristics as well as the only enumeration
of the minimal cutsets, which are similar to the ones presented in Chapter 8.

The BMC based technique is, however, a “partial verifier” for the LTL
model checking problem, meaning that the possible answers are FALSE
(with a counterexample) and UNKNOWN when there is no answer. During
the enumeration of the minimal cutsets computation, not reaching a TRUE
result might hide a trace violating the given property without triggering
any fault. In this case, the whole fault tree would collapse into the empty
set i.e., every fault configurations are supersets of the empty one.

One possible approach to provide a complete (no UNKNOWN ) result is
to combine the BMC approach with LTL model checking via BDD [66, 116].
This can be done by integrating a BDD check S |= G(¬FT ) → ϕ that
evaluates if the BMC was able to find all fault configurations. A positive
result will terminate the analysis, while a negative one would require to
increase the depth of the BMC evaluation in order to discover more cutsets.
The LTL fault tree analysis on finite states systems via the BMC+BDD
approach guarantees to terminate i.e., there exists a BMC depth where
reachable states are considered.

10.3 Extension with K-liveness

BDD-based techniques are not particularly efficient to deal with large sys-
tems due to a blow up in memory consumption. This drawback applies
also to the BMC+BDD-based minimal cutsets computation. Thus, a more
efficient way of performing LTL fault tree analysis consists in rely on pure
SAT-based techniques. The IC3-based K-liveness [60] is one of the most
promising approaches to replace the BDD-based check. More specifically,
this technique reduces LTL verification to a sequence of invariant checking.
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The key insight of K-liveness is that, for finite-state systems, this is equiv-
alent to find a K such that a signal f is visited at most k times, which in
turn can be reduced to invariant checking (i.e., it tries to prove FG¬f).
This approach is integrated in similar way of the MCS-BMC+IC3-sweep
algorithm described in Section 8.2. We compared this technique with a
conceptual implementation that reduces a liveness check into an invari-
ant checking [23], and that it performs afterwards an IC3-based minimal
cutsets computation over the resulting model. This analysis showed that
the method based on MCS-BMC+IC3-sweep provides better scalability
results compared to the liveness-to-safety approach. Further experimental
evaluations on these techniques are delegated to future works.
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Future Extensions

In this Chapter we presented a family of algorithms for model-based safety
analysis, based on IC3. The algorithms tightly integrate the generation
and minimization of cut sets, and enable the computation of the hazard
probability, both numerically and symbolically. Moreover, we introduced
a method to provide an estimate for the remaining computation, when the
generation does not terminate, and to safely approximate the final result.
This makes way for an anytime approach, and provides the possibility to
deal with cases where the number of cut sets may explode. In addition
to that, the extension that allows us to deal with TLE expressed as LTL,
represents a significant improvement over the previous techniques, which
support only invariant properties.

An important open challenge we wish to explore is the relaxation of
the monotonicity assumption on faults. Traditionally, in the avionics and
aerospace domain (from which our benchmarks are taken) non-monotonic
analysis is rarely considered, as it does not provide significant benefits –
most systems are indeed monotonic and, whenever they are not, monotonic
analysis already provides an accurate over-approximation. However, in
other domains this is known not to be the case: for example, in circuits
two subsequent inversions may prevent the occurrence of a top level event.

87



11. FUTURE EXTENSIONS

Given the hardness of the non-monotonic analysis, it may be also worth to
compute a monotonic over-approximation and find other means to tighten
the measure (or to compute the tightness of the approximation). Finally,
we want to study strategies to detect non-monotonicity, as in some cases
it may be unclear whether it holds or not.
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Part III

Compositional Safety Analysis





Introduction

Complex systems are often the result of two complementary processes. On
the one side, hierarchical design refines a set of requirements into increas-
ingly detailed levels, decomposing a system into subsystems, down to basic
components. On the other side, the process of safety assessment (SA) an-
alyzes the impact of faults, and pinpoints their consequences (e.g., a valve
failing to operate) on high-level functions (e.g., loss of thrust to engines).

In architectural design, the failures of components are typically not mod-
eled explicitly, thus they typically artificially introduced in the model for
safety assessment. However, the design that is later implemented in real
software and hardware components contains only nominal interfaces and
behaviors, which may contain redundancy mechanism or failure monitor-
ing, but not the failure themselves. We call such architectural design the
nominal architecture. Modeling and analysis of faults is the objective of
safety assessment, however there is often a gap between the design of the
nominal architecture and SA, which are carried out by different teams,
possibly on out-of-sync components. This requires substantial effort, and
it is often based on unclear semantics.

In this Part we show a new formal methodology to support a tight in-
tegration between the architectural design and the safety assessment pro-
cess [35]. Our approach builds on two main ingredients. First, we use
Contract-Based Design (CBD) - a technique that provides formal support
to the architectural decomposition of a system into subsystems and sub-
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components. Components at different levels of abstraction are character-
ized by contracts (assumptions/guarantees). CBD can provide feedback in
the early stages of the process, by specifying blocks in abstract terms (e.g.,
in terms of temporal logic [58]), without the need for a behavioral model
(e.g., in terms of finite-state machines).

Second, we use the idea of fault injection (a.k.a. model extension),
which enables the transformation of a nominal model into one encompass-
ing failures. This is done by introducing additional variables driving faults
activation, hence controlling whether the system is behaving according to
the nominal or the faulty specification. Within this setting, it is possible to
automatically generate Fault Trees (FTs) using model checking techniques.
This approach focused in the past on behavioral models [94, 41], with a
significant limitation of generating two-levels “flat” FTs, corresponding to
the DNF of their minimal cut sets (MCSs) [37]; as such, it is unable to
exploit system hierarchy.

The novel contribution of our approach is the extension of CBD for SA
(CBSA): given a nominal contract-based system decomposition, we auto-
matically obtain a decomposition with fault injections. The insight is that
the failure mode variables are directly extracted from the structure of the
nominal description, and that they model the failure of a component to
satisfy its contract. The approach is proved to preserve the correctness
of refinement: the extension of a correct refinement of nominal contracts
yields an extended model where the refinements are still correct. Once the
contracts are extended, it is possible to automatically construct FTs that
mimic the structure of the architecture, and formally characterize how
lower-level or environmental failures may cause failures at higher levels.
This approach has several important features. First, it is fully automated,
since SA models are directly obtained from the design models, without
further human intervention. Second, it can be applied early in the devel-
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opment process and stepwise along the refinement of the design, providing
a tight connection between design and SA. Third, it allows for the gener-
ation of artifacts that are fundamental in SA, namely FTs that follow the
hierarchical decomposition of the system architecture.

The framework has been implemented extending the OCRA tool [54],
which supports CBD. We show experimentally that our approach is able
to produce hierarchically organized FTs automatically and efficiently. Fur-
thermore, when applied to behavioral descriptions, the partitioning pro-
vided by CBD demonstrates a much better scalability than the monolithic
approach, which does not consider the hierarchical system decomposition.

The rest of Part III is structured as follows:

• Background

– Chapter 12 provides an overview of the current automated tech-
niques for structured fault trees generation;

– Chapter 13 describes the Wheel Braking System, which is used as
running example in the description of this Part;

– Chapter 14 provides a characterization of the Contract-Based
technique;

• Contributions

– Chapter 15 extends the contract-based approach with Safety As-
sessment.

– Chapter 16 discusses the results of the experimental evaluations;

– Chapter 17 concludes with the foreseeable future extensions.
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Automated Generation of Structured
Fault Trees

In recent years, as discussed in Chapter 3, there has been a growing in-
dustrial interest in MBSA, see e.g., [41]. These methods are based on a
single safety model of a system. Formal verification tools based on model
checking have been extended to automate the generation of artifacts such
as FTs and FMEA tables [41, 40, 31, 37, 32], and used for certification of
safety critical systems, see e.g., the Cecilia OCAS platform by Dassault
Aviation. However, the scope of such methods is limited to the generation
of the MCSs, represented as a two-level FT. This limitation has an impact
in terms of scalability, and readability of the FTs. The approach described
in this Part overcomes those limitations – both in terms of scalability and
significance of the generated FTs (we produce hierarchically organized FTs,
as per [107]). Moreover, as a difference with traditional MBSA, we follow a
fully top-down development approach, which closely resembles the SA pro-
cess as described, e.g., in [107], providing feedback in much earlier stages
of the design.

An alternative approach for the generation of more structured FTs is
based on actors-oriented design [101, 91], however these techniques do not
account for a stepwise refinement of SA, as outlined in [107]. Specifically,
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even in presence of minor changes, this approach does not provide the
possibility to refine, extend or reuse previous FTA.

Different approaches tackle the problem of automated construction of
safety artifacts by inspecting SysML and UML system modelings. In [99,
85], Fault Trees are synthesized from UML diagrams by applying a model
transformation technique. A different approach described in [75] aims at
providing a set of formal analysis, that rely on Matlab/Simulink/Stateflow,
in order to support the safety analysis process and increase the confidence
of the produced results. A different approach that aims at automatizing the
safety analysis is proposed in [28]. In particular, it applies a transformation
from UML to PROMELA (the formal language of the SPIN [73] model
checker) for the formal verification part, and to a subset of Stochastic Petri
Nets for the quantitative analysis. However, the Fault Tree generation is
carried out by inspecting predefined architectural patterns.

Our work is similar in spirit to [15], which presents a methodology based
on retrenchment (an extension of classical refinement), to generate hier-
archical FTs from systems represented as circuits, exploiting the system
dataflow. A major difference is that retrenchment does not focus on top-
down development, but rather on the relation between nominal and faulty
behaviors. It takes as input the system hierarchy and the behavioral mod-
els, hence it does not support the FT generation along the stepwise refine-
ment. Moreover, the framework is theoretical and, although an algorithm
for generation of FTs is provided, implementation issues for its realization
are not discussed.

In [16], contracts are (manually) generated after a safety and design
process. The FT is manually constructed starting from some diagrams
describing the system behavior. State machines are extended with faulty
behavior to analyze the hazards. Differently from our work, FTA and
hazards analysis are used to collect information to specify the contracts.
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We instead start from the contracts to derive automatically the FT.
In this work, we based the fault-tree generation on the contract-based

refinement. There are other more mature refinement techniques such as
the B Method [6], but we are not aware of approaches to FT generation
based on these refinements.

Finally, in the context of fault diagnosis, the work described in [112]
constructs diagnoses by exploiting the hierarchy of a circuit; the health
variable associated with a region of the circuit, called cone, resembles the
idea of intermediate event in a FT. However, this work does not focus on
architectural design and stepwise refinement.
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The Wheel Braking System Example

In this work, we integrate the formal description of the Contract-Based
Safety Analysis technique with an explanatory running example: the Wheel
Braking System (WBS). This case study was introduced in [107], and later
used to describe a formal specification ([64]) and refinement ([58]) of con-
tracts along a system architecture – it is therefore an ideal case study to
evaluate our approach. The Wheel Braking System controls the braking
of the main gear wheels for taxiing and landing phases of an aircraft. The
architecture of the WBS is organized in multiple levels, and each of them
refines the previous one:

System Component

WBS Brake system Annunciation

Normal WBS Alternate WBS Emergency WBS

BSCU Hydraulic

SubBSCU1 SubBSCU2 Select Switch

Figure 13.1 shows the WBS architecture, where the top level compo-
nent is called System Component, and contains the whole architecture.
This component is then refined with the Wheel Braking System (WBS),
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Figure 13.1: WBS architecture (the names in parenthesis define the abbreviations)

which is the actual braking system, and the Braking System Annunciation
(BSA) that operates as a monitor on the WBS activity, raising a signal in
case of the WBS fails to operate. The WBS can be commanded either au-
tomatically or manually via brake pedals, and it is composed of three sub
systems: Normal (NWBS), Alternate (AWBS), and Emergency (EWBS).
Those systems operate in cascade, in fact the alternate system is in stand
by and is selected automatically when the normal one fails. The emergency
brake system is activated when both NWBS and AWBS fail. In normal
mode, the brake is controlled by the Braking System Control Unit (BSCU),
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implemented with two redundant control units. Each sub-unit (SB1 and
SB2) receives an independent pedal-position signal. Monitors detect the
failure of the sub-units, producing the “Valid” signals, and of the whole
BSCU. Moreover, the Wheel Braking System relies on hydraulic power to
perform the brake operations. This system is redundant, and it is based on
two independent sets of hydraulic pistons, supplied by independent power
lines: the “green power supply” (GP), used in normal mode, and the “blue
power supply” (BP), used in alternate mode.

[107] also describes a preliminary sytem safety analysis of the WBS,
using FTA to analyze the “Unannunciated loss of all wheel braking” top
event. The resulting FT (Figure 13.2) reflects how the top event depends on
the unannounciated loss of the three braking systems and develops the tree
downwards, identifying the failures contributing to the unannounciated loss
of normal braking. An example of intermediate event is “Normal Brake
System does not operate”, whereas “Switch failed stuck in intermediate
position” is a basic event.

As defined in Chapter 4, we represent a hierarchically organized Fault
Tree (FT) [117] as a set of Boolean formulae over Basic Events (BE) and
Intermediate Events (IE). This representation defines a tree where leaves
are BE, and nodes are IE. For shake of clarity, we report the representation
introduced in Definition 4.6.1:

FT ::= be | ie 7→ FT | FT ∧ FT | FT ∨ FT

According to this definition, the first level of the FT represented in Fig-
ure 13.2 can be then expressed as:

“Unannuciated loss of all wheel braking” (the TLE) 7→
“Loss of all wheel braking” (an Intermediate Event) ∧

“Loss of annunciation capability” (a Basic Event).
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Unannunciated loss	of	all	wheel	
braking

Loss	of	annunciation	capabilityLoss	of	all	wheel	braking

Alternate	Brake	System	does	not	
operate

Normal	Brake	System	does	not	
operate

Emergency	Brake	System	does	not	
operate

Loss	of	Normal	Brake	System	
Hydraulic	componentLoss	of	Green	Hydraulic	Supply Loss	of	BSCU	ability	to	command	

braking

Loss	of	aircraft	Electrical	Power	to	
BSCU

BSCU	fault	causes	loss	of	braking	
commands

BSCU2	failure	causes	loss	of	
braking	commands

BSCU1	failure	causes	loss	of	
braking	commands

BSCU	Validity	Monitors	incorrectly	
report	dual	failures	

Switch	failed	“stuck”	in	
intermediate	position

Figure 13.2: Fault tree of an unannounciated loss of all wheel braking developed in [108]

The second level extends the intermediate events of the first one, and
in this example it is:

“Loss of all wheel braking” 7→
“Alternate Brake System does not operate” ∧
“Normal Brake System does not operate” ∧

“Emergency Brake System does not operate”.

The successor levels recursively define the IEs, while the Basic Events
are treated as terminals, as defined by the representation of a FT.
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Contract-Based Design

Contract-based design is a paradigm for the design of component based,
hierarchically structured, complex systems. This approach has emerged in
order to support the fact that the development of such systems is highly
distributed, and characterized by a stepwise components refinement. For
instance, electrical and hydraulic systems are cooperating actors in an air-
craft, but their development is decentralized (sometimes even geograph-
ically) and conducted by different engineering teams that share just the
interfaces of such systems. Moreover, the development of a (macro) sub-
system is carried out by decomposing it in multiple parts.

The contract-based design aims at supporting this process by associat-
ing to each component a contract i.e., a clear description of the expected
behavior. This definition, expressed over the component’s interface, de-
scribes a guaranteed behavior over the output ports, provided that the
inputs obey a set of assumptions. This Chapter formalizes the concept
of Contract-Based Design, which represents the underline theory for the
Contract-Based Safety Analysis.
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14.1 Components and system architectures

A component interface consists of a set of ports, which are divided into
input and output ports1. Input ports are those controlled by the environ-
ment and fed to the component. The output ports are those controlled
by the component and communicated to the environment. Formally, each
component S has interface 〈IS, OS〉 of input and output ports. We denote
with VS the set of ports related to the component interface S given by the
union of IS and OS.

In order to formalize the decomposition, we need to specify the inter-
connections between the ports, i.e. how the information is propagated
around. Intuitively, the input ports of a component are driven by other
ports, possibly combined by means of generalized (e.g., arithmetic) gates.
These combinations, in the following referred to as drivers, depend on the
type of the port. Without loss of generality, we assume that ports are
either Boolean- or real-valued. The driver for a Boolean port is a Boolean
formula; for a real-valued port it is a real arithmetic expression. Therefore,
we define a decomposition of a component S as a pair ρ = 〈Sub, γ〉 where
Sub is a non-empty set of (sub)components such that S 6∈ Sub, and the
connection γ is a function that:

• maps each port in OS into a driver over the ports in IS ∪
⋃
S′∈SubOS′,

and

• for each U ∈ Sub, maps each port in IU into a driver over the ports
in IS ∪

⋃
S′∈SubOS′.

We extend γ to Boolean and temporal formulas so that γ(φ) is the
formula obtained by substituting each symbol s in OS and IU for all U ∈
Sub with γ(s). Note that, since φ is a Boolean or temporal formula over

1For simplicity, we ignore here the distinction between data and event ports.
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the ports of a single component, γ(s) does not contain s and therefore γ(φ)
is well defined (there is no circularity in the substitution).

A system architecture is a tree of components where for each non-leaf
component S a decomposition 〈SubS, γS〉 is defined such that SubS are
the children of S in the tree. Let Sub∗ be the set of components in the
architecture tree. Let γ be the union of γS with S ∈ Sub∗, i.e., γ takes
an expression over ⋃S∈Sub∗ VS and substitute s with γS for every s ∈ OS ∪⋃
S′∈SubS

IS′ (we are assuming that the sets of ports of different components
are disjoint). We denote with γ∗ the iterative application of γ until reaching
a fixpoint. Thus, γ∗ takes an expression over ⋃S∈Sub∗ VS and applies γ until
the expression contains only input ports of the root and output ports of
the leaf components.

Note that, for simplicity, we are considering only synchronous decom-
positions for which we need only a mapping of symbols. The framework
can be extended to the asynchronous case by considering also further con-
straints to correlate the ports. In the following, we also assume that we
have only one instance for each component so that we can identify the
instance with its type to simplify the presentation. In practice, we deal
with multiple instances by renaming the ports adding the instance name
as prefix.

Example 14.1.1. The WBS architecture, informally introduced in Chap-
ter 13, can be formalized with the notion of decomposition defined above.
For example, the top-level system component SC has two subcomponents,
namely WBS and BSA. Therefore Sub(SC) = {WBS,BSA}. The map-
ping γ is in most of cases just a renaming. For example, the input port P1 of
WBS is driven by the input port P1 of SC. Formally γ(WBS.P1) = SC.P1
(since we avoided the distinction between component types and instances to
simplify the notation, we here use the dot notation to have a unique name
for each port). In few cases, the driver is not atomic. For example, the
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output port Valid of BSCU is driven by the disjunction of the homonyms
of SB1 and SB2. Formally, γ(BSCU.V alid) = SB1.V alid ∨ SB2.V alid.

14.2 Trace-Based Components Implementation and
Environment

A component S encapsulates a state which is hidden to the environment.
It interacts with the environment only through the ports. This interaction
is represented by a trace in Tr(VS).

An input trace is a trace restricted to assignments to the input ports.
Similarly, an output trace is a trace restricted to assignments to the output
ports. Given an input trace σI ∈ Tr(IS) and an output trace σO ∈ Tr(OS),
we denote with σI × σO the trace σ such that for all i, σ[i](x) = σI [i](x) if
x ∈ IS and σ[i](x) = σO[i](x) if x ∈ OS.

For simplicity, we do not distinguish between a language (set of traces)
and the behavioral model that generates it. Therefore, both implementa-
tions and environments of a component S are seen as subsets of Tr(VS)
(note that we are considering also the output ports for the language of the
environment because this can be affected by the component implementa-
tion).

A decomposition of S generates a composite implementation given by
the composition of the implementation of the subcomponents, as well as a
composite environment for each subcomponent given by the environment
of S and the implementations of the other subcomponents. In order to
define formally these notions, we extend γ to states seen as conjunctions of
equalities (assignments). Note that, if s is a state, then γ(s) represents a
set of states. Considering the example of γ introduced in Example 14.1.1,
if BSCU.V alid = >, then γ(BSCU.V alid = >) is equal to (SB1.V alid ∨
SB2.V alid) = >. Finally, we extend γ to traces seen as sequence of states.
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Given a decomposition 〈Sub, γ〉 of S with Sub = {S1, . . . , Sn} and an
implementation Mj for each subcomponent interface Sj ∈ Sub, we define
the composite implementation CIγ({Mj}Sj∈Sub(S)) of S taking the product
of the traces of the subcomponents and projecting on the ports of the
component S:

CIγ({Mj}Sj∈Sub(S)) :=
{πI × πO ∈ Tr(VS) |
∃πO1 ∈ Tr(OS1), . . . , πOn ∈ Tr(OSn

) s.t.
πI × πO1 × . . .× πOn ∈ γ(M1) ∩ . . . ∩ γ(Mn) ∩ γ(πO)}

Similarly, given a subcomponent Sh ∈ Sub, an implementation Mj for each
subcomponent Sj ∈ Sub\ with j 6= h, and an environment E for S, we
define the composite environment CEγ(E, {Mj}Sj∈Sub(S),j≤h) of Sh taking
the product of the traces of E and the other subcomponents and projecting
on the ports of Sh:

CEγ(E,{Mj}Sj∈Sub(S)) :=
{πIh × πOh ∈ Tr(VSh

) |
∃πI ∈ Tr(IS), πO1 ∈ Tr(OS1), . . . , πOn ∈ Tr(OSn

) s.t.
πI × πO1 × . . .× πOn ∈ γ(M1) ∩ . . . ∩ γ(Mn) ∩ γ(πIh)}

14.3 Contracts

A component contract is a pair of properties, called the assumption, which
must be satisfied by the component environment, and the guarantee, which
must be satisfied by the component implementation when the assumption
holds. We assume as given an assertion language for which every assertion
A has associated a set of variables VA and a semantics L(A) as a subset
of Tr(VA). In practice, we will use LTL to specify such assertions, but the
approach can be applied to any linear-time temporal logic.

107



14. CONTRACT-BASED DESIGN

Given a component S, a contract for S is a pair C = 〈A,G〉 of as-
sertions over VS representing respectively an assumption and a guarantee
for the component. Let M and E be respectively an implementation and
an environment of S. We say that M is an implementation satisfying C

iff M ∩ L(A) ⊆ L(G). We say that E is an environment satisfying C

iff E ⊆ L(A). We denote with M(C) and with E(C), respectively, the
implementations and the environments satisfying the contract C.

Two contracts C and C ′ are equivalent (denoted with C ≡ C ′) iff they
have the same implementations and environments, i.e., iffM(C) =M(C ′)
and E(C) = E(C ′). A contract C = 〈A,G〉 is in normal form iff the com-
plement L(A) is contained in L(G). We denote with nf(C) the assertion
¬A ∨ G. The contract 〈A, nf(C)〉 is in normal form and is equivalent to
(i.e., has the same implementations and environments of) C [19].

Example 14.3.1 (WBS contract). We are interested in defining the con-
tract related to the requirement of the WBS that, given the application
of the braking pedals, must activate the brakes. This is formalized with
the LTL formula G = G((P1 ∨ P2) → F(Brake)). The WBS compo-
nent requires an environment that provides the same signal on the pedal
application and such that power is always supplied to the BSCU and hy-
draulic pumps. This is formalized in the LTL formula A = G((P1 =
P2) ∧GP ∧BP ∧ SP ).

14.4 Contract refinement

Since the decomposition of a component S into subcomponents induces
a composite implementation of S and composite environment for the sub-
components, it is necessary to prove that the decomposition is correct with
respect to the contracts. In particular, it is necessary to prove that the
composite implementation of S satisfies the guarantee of S’s contracts and
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that the composite environment of each subcomponent U satisfies the as-
sumptions of U ’s contracts. We perform this verification compositionally
only reasoning with the contracts of the subcomponent independently from
the specific implementation of the subcomponents or the specific environ-
ment.

In the following, for simplicity, we assume that each component S has
only one contract denoted with CS and is refined by the contracts of all sub-
components (the approach can be easily extended to the general case [58]).
Given a component S and a decomposition ρ = 〈Sub, γ〉, the set of con-
tracts C = ⋃

S′∈Sub(S)CS′ is a refinement of CS, written C ≤ρ CS, iff the
following conditions hold:

1. given an implementation MS′ for each subcomponent S ′ ∈ Sub(S)
such that MS′ satisfies the contract CS′, then CIγ({MS′}S∈Sub(S)) sat-
isfies CS (i.e., the correct implementations of the sub-contracts form
a correct implementation of CS);

2. for every subcomponent S ′′ of S, given an environment E of S sat-
isfying CS and an implementation MS′ for each subcomponent S ′ ∈
Sub(S) such thatMS′ satisfies the contract CS′, then CEγ(E, {MS′}S′∈Sub(S))
satisfies CS′′ (i.e., the correct implementation of the other subcompo-
nents and a correct environment of CS form a correct environment of
CS′′).

Example 14.4.1 (WBS contract refinement). As shown in Fig. 13.1,
the WBS component is decomposed into NWBS, AWBS and EWBS.
The contracts of these subcomponents are Cnwbs = 〈G((P1 = P2) ∧
SP ∧ GP ),G((P1 ∨ P2) → F(BN))〉, Cawbs = 〈G(BP ),G(((P1 ∨ P2) ∧
¬F(BN))→ F(BA))〉, Cewbs = 〈>,G(((P1∨P2)∧¬F(BN)∧¬F(BA))→
F(BE))〉. The connection are defined in a straightforward way. It is easy
to see that the these contracts correctly refine the contract of the WBS

109



14. CONTRACT-BASED DESIGN

component. We remark that the implementation of the NWBS would be
sufficient to ensure the guarantee of the parent component i.e., AWBS and
EWBS systems are redundant and play a role only in case of failures.
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Contract-Based Safety Analysis

15.1 Contract-Based Fault Injection

The goal of our approach is to take as input an architecture enriched with
a correct contract refinement and automatically generate a hierarchically
organized FT. The idea is to introduce, for each component and for each
contract, two failure ports: one representing the failure of the component
implementation to satisfy the guarantee, the other representing the failure
of the component environment to satisfy the assumption. This step is
represented by the arrow labeled 1.1 in Figure 15.1. The connections among
such failures are automatically generated and they are later used to produce
the FT, as illustrated by label 1.2 in Figure 15.1. The successive refinement
of components (i.e., layers 2 and 3 in Figure 15.1) allows us to extend the
analysis and generate a more detailed FT. These characteristics of the
CBSA approach mimic the recommended practices outlined in [107].

15.1.1 Extension of components and contracts

Given a component interface 〈IS, OS〉 of the component S, we define the
extended interface 〈IXS , OX

S 〉 as the interface in which the inputs has been
extended with the new Boolean port f IS and the output has been extended
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Figure 15.1: Contract-based Safety Assessment Process

with the new Boolean port fOS . Namely, 〈IXS , OX
S 〉 is defined as 〈IS ∪

{f IS}, OS ∪ {fOS }〉. Intuitively, fOS represents the failure of the component
implementation to meet its requirements, while f IS represents the failure of
the component environment to fulfill the component’s assumptions.

The “nominal” contract of a component is extended to weaken both
assumption and guarantee, in order to take into account the possible failure
of environment and implementation. Given the contract 〈AS,GS〉 of S, we
define the extended contract 〈AXS ,GXS 〉 as follows AXS = (¬f IS) → AS and
GXS = (¬fOS )→ GS.

Note that in this simple contract extension the failure is timeless in the
sense that either there are no failures and the nominal contract holds, or
nothing is assumed or guaranteed. By convention, the failure ports are
evaluated initially and the future values are don’t cares. More complex
contract extensions will be developed in the future.
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15.1.2 Contract-based synthesis of extended system architec-
ture

We now describe how we generate an extended system architecture given a
nominal one with a correct contract refinement. In the extended architec-
ture, components’ interfaces and contracts are extended as described in the
previous section, while here we automatically synthesize the connections
among the extended components. The synthesis ensures that the refine-
ment of contracts in the extended architecture is correct by construction.

For each component S, we define the extended connection mapping γX

so that γX(p) = γ(p) for all original ports, i.e., for p ∈ IS ∪ OS, while for
the new failure ports γX is defined as follows:

• γX(fOS ) := MCS>(γ((∧S′∈Sub(S)(AXS′ → GXS′)) ∧ AXS ),¬γ(GS), {f IS} ∪
{fOS′}S′∈Sub(S)). Intuitively, the driver of the failure of S’s guarantee is
given by all combinations of the failures of the subcomponents and the
environment that are compatible with the violation of the guarantee
of S.

• for all U ∈ Sub(S), γX(f IU) := MCS>(γ(∧S′∈Sub(S)\{U}(AXS′ → GXS′) ∧
AXS ),¬γ(AU), {f IS} ∪ {fOS′}S′∈Sub(S)\{U}). Intuitively, the driver of the
failure of U ’s assumption is given by all combinations of the failures
of the other subcomponents and the environment of S that are com-
patible with the violation of the assumption of U .

The resulting extended contract refinement is correct:

Theorem 15.1.1. If {CS′}S′∈Sub(S) �γ CS, then {CX
S′}S′∈Sub(S) �γX CX

S .

Example 15.1.1 (Synthesis of faults dependencies for WBS component).
Given the extended contract CX

wbs, the safety analysis will produce the de-
pendencies formulae for each fault port fOwbs, f Inwbs, f Iawbs and f Iewbs. Specif-
ically, the resulting faults dependency for fOwbs := (fOawbs ∧ fOnwbs ∧ fOewbs) ∨
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(f Iwbs∧fOewbs), which means that every assignment of such formula will cause
the failure of fOwbs. This result confirms that the braking ability of the WBS
is guarantee if at least one of NWBS, AWBS and EWBS is working, but
in case of loss of the power sources (f Iwbs) the EWBS is necessary in or-
der to guarantee the right behaviour. The following analysis for f Inwbs and
f Iawbs will produce respectively f Inwbs := f Iwbs and f Iawbs := f Iwbs. In fact,
the subsystems NWBS and AWBS need for BP, SP, and GP power lines,
which functionality is part of the assumption of the WBS. The last step
addresses the verification of the proof obligation for f Iewbs which is unsat,
expressing the fact that it has no dependencies to the other fault ports.
According to this result, Figure 13.1 shows that EWBS is not dependent
to any assumptions of the WBS i.e., it does not need any power sources.

15.2 Contract-Based Fault Tree Analysis

15.2.1 Contract-based Fault Tree Generation

Given the extension of the system contract refinement, the FT is auto-
matically generated. The top level event is the failure fOS of a non-leaf
component S. It is labeled with “Fail of CS”, where CS is the contract
of S. The intermediate events are similarly labeled with the failure of the
guarantees of the components that are used in the contract refinement and
are not further refined. The failure of the system environment is labeled
with “Fail of Environment”. The leaves of the tree are basic events, rep-
resenting the failure of the system’s assumption and the failures of the
guarantees of contracts that are not further refined. If the architecture is
extended further in a step-wise way by decomposing some leaves compo-
nents, these basic events can become intermediate and be refined further
by exploiting the extended contract refinement.

The FT is generated starting from the top level event fOS and linking
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it to the intermediate events present in γX(fOS ). Formally, if f is a basic
event, then the FT is atomic: FT (f) := f ; if f is an intermediate event,
then FT (fOS ) := fOS 7→ γX(fOS ). Thus, the FT is defined recursively until
reaching the basic events. To simplify the tree, we do not label the failure
of the assumption of intermediate components. Therefore, if U is not the
system component and f IU is present in the tree, we replace it with γX(f IU).
Note that the same failure may appear in different branches of the FT – this
is standard in FTA – hence, in the above top-down procedure we only need
to expand one occurrence of the same failure. We also assume that in the
relationship among the failures there is no circular dependency. Usually,
such dependencies may be broken by introducing time delays [117]. We
leave modeling of faults with temporal dynamics and dealing with circular
dependencies to future work.

Example 15.2.1 (Automatic generation of WBS FT). By applying con-
tract refinement to the WBS example, we obtain the FT in Figure 15.2.
As it can be seen from Table 15.1, there is nearly a one-to-one mapping
with the FT presented in Figure 13.2 – the only differences are that: (i) in
the contract-based FT the failure of the environment is considered also for
the sub-components that depends to it, and this provides a more detailed
system failure explanation; (ii) the monitoring function is more detailed in
our model.

15.2.2 CBSA Cut-Sets semantics

We notice that, in the generated FT, the cut sets local to a single com-
ponent decomposition are minimal by construction. Here, we consider the
cut sets of the whole FT that are obtained by replacing intermediate events
with their definition in the FT. We call them flattened cut sets, since they
can be represented as a two-level FT. They are defined in terms of the
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Figure 15.2: Fault tree of an unannunciated loss of all wheel braking: automatically
generated

Failure of Contract Description

system.annunciate braking loss Unannunciated loss of All Wheel Braking.
bsa.annunciate Loss of Annunciation Capability.

wbs.brake Loss of All Wheel Braking.
nwbs.brake Normal Brake System does not operate.
awbs.brake Alternate Brake System does not operate.
ewbs.brake Emergency Brake System does not operate.

hydr.brake
Loss of Normal Brake System Hydraulic
Components.

bscu.cmd valid Loss of BSCU Ability to Command Braking.

switch.select
Switch Failure Contributes to Loss of Braking
Commands.

bscu1.cmd Loss of BSCU sub system 1.
bscu1.valid Loss of monitoring for BSCU sub system 1.
bscu2.cmd Loss of BSCU sub system 2.
bscu2.valid Loss of monitoring for BSCU sub system 2.

Table 15.1: Failure of contracts description

failures of the basic components and of the system environment.
Let leaves be the basic components of the architecture and let root the

(root) system component. We denote with F the set of basic failure ports,
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i.e., F = {fOl }l∈leaves∪{f Iroot}, and we identify a fault configuration with an
assignment to these parameters. A cut set is therefore a fault configuration
of a trace violating the top-level guarantee.

Given a failure port fS (either input or output) of a component S in
the architecture, let us define γX∗(fS) as the iterative application of γX

to fS until reaching a fixpoint, i.e., a Boolean combination of failures in
F only. γX∗(fS) defines the set of flattened cut sets obtained with CBSA.
We prove that every cut set (in the standard sense) is also a flattened cut
set for CBSA.

Theorem 15.2.1. Let LX = L(γ∗(∧l∈leaves(GXl ) ∧ AXroot)).
If FC ∈ CS(LX ,¬(GS),F), then FC> |= γX

∗(fOS ).

Here, LX represents the extension of the system architecture in a MBSA-
like fashion, where the guarantees of leaf components and the root assump-
tion are extended locally without explicit constraints among component
failures (hence, γ∗ is used instead of γX∗). The converse is not true in gen-
eral. In fact, for the contract refinement to be correct, it is sufficient that
the contract of the composite component is weaker than the composition
of those of the subcomponents. However, this may create cut sets that are
present considering the weaker contract, while are they ruled out by the
composition.

15.2.3 Relationship between contracts and generated fault trees

We remark that the FT generated with the proposed approach is clearly
sensitive to the contracts and can be used to improve the CBD. For exam-
ple, in the contract specification of the WBS proposed in [64], each redun-
dant sub-BSCU guarantees that the input pedal application is followed by
the braking command or the Validity Monitor set to invalid within a given
time bound. Following this approach, the proposed procedure generates a
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FT in which each sub-BSCU is a single point of failure. In fact, a failure of
its contract means that it can keep the Validity Monitor set to true without
ever braking. This contrasts with [107]. The FT shown in Figure 15.2 is
actually obtained with an improved specification, where we separated the
functional part of the contract from the monitoring of safety, providing a
contract that says that every pedal application is followed by the braking
command and another contract demanding that the Validity Monitor is
set to invalid if the pedal is applied but the brake is never commanded.
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Experimental Evaluation

We implemented our methodology on top of OCRA [54], a tool for archi-
tectural design based on CBD. The OCRA language allows the user to
specify contracts (written in various temporal logics of different expres-
siveness, including LTL and HRELTL [57]), and associate them to archi-
tectural components. The correctness of refinements is reduced to a set
of proof obligations (as per Chapter 14) – temporal satisfiability checks
that are carried out by nuXmv [97], the underlying verification platform,
which provides reasoning capabilities via BDD-, SAT-, and SMT-based
techniques.

We extended OCRA in the following directions. First, we implemented
primitives to automatically extend the architectural description by means
of symbolic fault injection, extending the ports and the contracts. Second,
we implemented the procedure for the synthesis of the interconnections
between failure ports among different levels, as per Section 15.1. Finally,
we implemented the procedure to extract FTs from the extended models,
as per Section 15.2, and the algorithms used here are based on the ones
described in Part II.

We first evaluated the CBSA approach by modeling (several variants of)
the WBS case-study in OCRA. The analysis demonstrated very useful to
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Faults Number (FN) 9 10 11 12 13 . . . 29
Minimal Cutsets (MCS) 6 11 22 42 50 . . . 3316
Mono.BDD 619 1106 3180 T.O. T.O. T.O. T.O.
CBSA.BDD 701 701 701 702 702 702 703
Mono.BMC+BDD 3.1 3.4 4.1 4.6 4.9 ... 582
CBSA.BMC+BDD 1.8 1.8 1.8 1.8 1.8 1.8 1.8

Table 16.1: Scalability comparison

provide feedback on the structure of the contracts. In fact, as described in
Section 15.2.3, we could improve over the first version of the WBS model
described in [64, 58]. We then compared our approach with the “flat”
MBSA approach implemented in xSAP - a re-implementation of FSAP[40].
xSAP supports FTA for behavioral models (finite state machines written
in the SMV language). We refer to the xSAP approach as monolithic,
since it generates FTs that are “flat”(i.e., presented as DNF of the MCSs).
In OCRA, FTs can be generated from behavioral models, by associating
each leaf component with an SMV implementation, where the activation of
failure modes causes the violation of contracts. For the evaluation, we as-
sociated concrete implementations to the leaf WBS components. We first
evaluated the tightness of the contract extension. As described in Sec-
tion 15.2, CBSA can provide a “pessimistic” interpretation of the system
failure, due to the hierarchical partitioning imposed by contract decom-
position. Indeed, our results confirm that this is the case for the WBS:
if the concrete implementations happen to operate correctly even if the
power is not provided, then the monolithic approach provides a tighter set
of MCSs. However, if the concrete implementations are such that a loss of
power implies a loss of functional behavior, then both techniques result in
the same sets of MCSs.

We also compared the scalability of the monolithic and the CBSA ap-
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proach for FTA. We considered a parameterized version of the WBS, by
varying the total number of faults (NF), and the upper bound for the
cycles needed to wait until performing an emergency reaction (DS). The
experiments were run on an Intel Xeon E3-1270 at 3.40GHz. We first var-
ied the delay DS (with NF = 9). With NF = 10, CBSA takes 11m40s
(BDD), and 2s (BMC+BDD, with k=20), whereas the monolithic ap-
proach takes 14m and 7s, respectively. For NF = 15, CBSA times do
not vary, while the monolithic approach requires more than 50m (BDD),
and 15s (BMC+BDD). The stability in performance shown by the CBSA
approach is motivated by the fact that the time needed to compute the
FT is mainly spent during the contracts evaluation, whereas analyzing the
leaves takes always less than 1s. We then fixed DS = 5 and varied NF
from 9 to 29. The results are reported in Table 16.1, where both BDD
and BMC+BDD were run with k=20. CBSA is subject only to a marginal
degradation in performance, since the variation is local to the computa-
tion of the FTs for the leaves. In contrast, the monolithic method passes
from 10m19s to timing out after one hour for NF = 12 (BDD), and from
3s to 582s (BMC+BDD). This degradation is directly correlated to the in-
creased number of MCSs, that are enumerated by the monolithic approach.
As a final remark, notice that the CBSA approach is fully incremental: the
only variation required when exploring different implementations is in con-
structing the FTs resulting from the analysis of each finite state machine
with respect to its contracts. This contrasts with the considerable efforts
required in the monolithic approach, that needs to be repeated for each
different implementation.

In this particular case study, the BMC+BDD is particularly efficient to
compute the Fault Tree (i.e., the CBSA approach takes less than 2 seconds),
primarily for the relatively small size of the model. Due to this fact, the
applications of the IC3-based approachs described in Part II would not be
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appreciable. For a more detailed analysis on the performance of the Fault
Tree Analysis we refer to Part VI.
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Future Extensions

In this part we proposed a new, formal methodology for safety assessment
based on contract-based design and automated fault injection. This ap-
proach is able to automatically generate hierarchical FTs mimicking system
decomposition, and overcoming two key shortcomings of traditional MBSA
[41], namely the lack of structure of the generated FTs, and the poor scal-
ability. Moreover, it provides full support to the informal, manual state of
the practice, and it can provide important feedback in the early stages of
system design.

As future work, we will investigate methods to pinpoint situations where
the hierarchical decomposition leads to over-constraining, and to generate
suitable diagnostic information. Second, we will generalize fault injection
with the introduction of more fine-grained failure dynamics based on tem-
poral patterns and the use of specific fault models (similar to the contract
extension with “exceptional” behavior [46]). We will investigate aspects re-
lated to fault propagation [2] and extend the framework to consider richer
contract specification languages to enable quantitative evaluation of FTs.
Moreover, we will extend the approach in order to generate multi-layered
FMEA tables.
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Part IV

Redundant Architecture Analysis





Introduction

Failure of hardware components is inevitable. Even the most perfect and
flawless design should accept this fact. Nevertheless, we cannot avoid to
rely on those hardware components, even in highly critical systems such as
aircraft, nuclear power plants, and biomedical equipments. In those area
of application, a system malfunctioning can cause loss of human lives and
environment damage, and this is not an acceptable condition.

An approach that is usually applied consists in integrating the system
with additional redundant components that take over in case of failure of
the primary ones. Starting from a system with a specific functionality, its
extension with redundant techniques requires several additional function-
alities such as detecting internal malfunctioning (Fault Detection), identify
its cause (Fault Identification), and apply a reconfiguration of the system
to solve the problem (Recovery). In modern system design, the phases
characterizing the reaction to a component failure are often implemented
in a distributed way, where each component implements part of functional,
fault detection, fault identification, and fault recovery behavior. In fact, all
components may fail, even the monitoring of the failing component e.g.,
a failure in the reconfiguration part - driven by the monitoring - of the
system would be as hazardous as a failure in the main functional part,
causing for instance unnecessary actuations.

Few dedicated techniques has been introduced in order to support de-
sign and development of a redundant system architecture. In fact, current
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approaches are mainly based on manual techniques, and this result in a
highly demanding process both in terms of time and cost.

In this Part we introduce a novel technique that allows the system de-
signer to support the design of redundant architectures. This approach
integrates in a model-based safety assessment process, and it allows for a
preliminary evaluation of the system e.g., when no detailed implementa-
tions are yet defined. In fact, the proposed approach imposes that original
and redundant systems have to guarantee the same behavior, regardless to
which specifically is.

The rest of Part IV is structured as follows:

• Background

– Chapter 18 provides an overview of the common approaches for
increasing system reliability;

– Chapter 19 introduces current analytical techniques;

• Contributions

– Chapter 20 describes an automated techniques based on SMT;

– Chapter 21 combines the SMT-based technique with predicate
abstraction in order to reach a significant performance improve-
ment;

– Chapter 22 shows the results of the experimental evaluations;

– Chapter 23 concludes with our future directions.
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Architectures for Reliability

A key property in high-dependability, safety critical system systems is the
ability to continue to operate correctly even in presence of faults. This
property, known as fault tolerance, can be achieved in many different ways.

The most common technique to achieve high availability for any service
is called Clustering. This approach consists in the introduction of a re-
dundancy in software, hardware, or data systems. When a failure occurs,
the main system gets substituted by one of the multiple copies present in
the same cluster, and this operation is performed in a complete automated
manner. Depending on the type of availability that the system has to
guarantee, clusters can be configured in any of the following ways:

• Cold Standby. In a cold standby approach, if the primary system
is operational and not experiencing any issues, then the secondary
one is not powered, not operating, and not taking part the service
provisioning. In case of a failure in the primary system, the secondary
one begins the starting procedure, and when it terminates the two
systems are exchanged. The steps that have to be performed during
the starting procedure depends on the nature of the system e.g., a
data storage might needs to transfer all the data from the primary
node.
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18. ARCHITECTURES FOR RELIABILITY

• Warm Standby. A redundancy approach is called warm standby when
the secondary system is powered, but not operating and not taking
part in the service provisioning. The primary and secondary sys-
tems are synchronized when a failure occurs in the main one. When
this operation terminates the two components are switched. A Warm
Standby approach guarantees higher availability than a Cold Standby,
because with the first approach the starting procedure has already
been performed.

• Hot Standby. When relying on a hot standby approach, the secondary
system is powered and ready to be operational. When no failures are
detected, the secondary system does not process any request or data.
The switching mechanism from main to backup system is much faster
than both cold and warm standby approaches, since it does not need
any additional prearranged configurations.

• Active-Active, also called load balanced, is a method where both pri-
mary and secondary systems are active and processing requests in
parallel. This approach provides, in general, a nearly instantaneous
switching between main and backup systems.

In order to increase reliability we consider “active-active” architectures,
by means of Triple Modular Redundancy, where multiple copies of the same
component are run in parallel, and the results are combined by means of
voting to increase the overall likelihood of correct computation. Moreover,
“hot-standby” approaches are also considered, where the activation of the
backup component is performed by an active component called switch. The
approach called Double Modular Redundancy fits into this categorization.

One of the most well-known and widely adopted “active-active” archi-
tectural patterns is the Triple Modular Redundancy. This design pattern
is widely studied [5, 115, 72, 82, 77, 12] and used for aircraft, nuclear re-
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(a) V111 (b) V001 (c) V010 (d) V100 (e) V011 (f) V101 (g) V110

(h) V122 (i) V112 (j) V120 (k) V102 (l) V012 (m) V123

Figure 18.1: Triple Modular Redundancy (1, 2 and 3 voters per stage)

actor plants, railways, and electric supply systems [122, 41, 20, 86]. A
basic TMR block is composed by three replicated modules, the results of
which are combined by a voter component. If all the components are in
agreement, the voter returns one of the common values. If only two of the
components agree, the value computed by the “majority” is returned. For
example, the voter schema used in [122] returns the median of the inputs
value. It is easy to see that a TMR schema is able to tolerate a single fault,
usually called single point of failure.

In order to compose multiple TMR blocks into more complex architec-
tures, triplicated inputs and outputs are considered. TMR blocks may
have different numbers of voters (e.g., 1, 2 or 3), and different possible
connection between them. The various combinations are shown in Fig-
ure 18.1. For the sake of simplicity, we depict unary computing modules
within TMR blocks. In fact, computing modules of greater arity are also
possible. As an example, consider the architecture from [5], depicted in
Figure 19.1, that will be used as a reference example in the rest of this
Part. We notice that in addition to the unary modules M3 and M5 we
have binary modules (M1, M2 and M4) and a ternary module (M5). On
the left-hand side is a description of the data flow being computed, and on
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the right a representation of the redundancy architecture.
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Analysis of Redundant Architectures

In order to support the design, it is important to provide a set of tech-
niques able to measure the characteristics of a given selection, or even
more importantly, the exploration of various architectural choices in the
cost-reliability space.

This aspect becomes even more important when considering that the
set of possible choices to apply a redundant scheme on a computational
network is quite big. In fact, the possible approaches to model the scheme
in Figure 19.1, by taking into account the TMRs in Figure 18.1, are in
the order of thousands of configurations. The analysis of such redundant
schemes becomes even harder when considering that the result should be
parameterized on the probability of failure of each component. In fact,
having the possibility to rely on different implementations (with higher or
lower reliability) might imply the choice of a different redundant scheme.

The following sections describe the techniques that can be used to eval-
uate an architectural scheme in early design phases.

19.1 State of the practice

Reliability engineering is the discipline that aims at investigating the
boundaries between system operation and system failure. In general terms,
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Nominal Case Redundant Case

Figure 19.1: Computational Network Example [5]

the techniques that have been developed in this area are mainly oriented
on analyzing the reliability performance of a given (redundant) system.
Differently, in this Part we concentrate on the evaluation of the impact of
applying different redundancy patterns to a given (reference) architecture.
Moreover, current approaches lack of a unified model-based approach able
to connect the variety of possible analysis [126]. Notable reliability ap-
proaches are based on Fuzzy Logics [49], Monte Carlo simulations [127],
and Petri Nets [106].

The use of model-based approaches tailored to the analyze different
applications of redundant schemes is rather limited. The technique intro-
duced in [72] enable for a semi-automated approach to achieve such kind
of evaluations. However, they rely on a substantial amount of manual ac-
tivity, carried out with “paper-and-pencil” techniques, and are limited by
substantially simplifying hypotheses (e.g., that all the computing modules
have the same failure probability).

In [82], the formalism of Communicating Sequential Processes (CSP) is
used to model and prove the correctness of a single TMR stage. The work
is mostly manual, and does not include any quantitative analysis.

In [123], a module based on redundancy is designed within the formalism
of timed automata, and analyzed using the Uppaal model checker. This
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work focussed on the specific features of the design, and does not consider
multi-staged architectures.

An industrial tool developed by Xilinx, called TMRTool [121], supports
the automated design of triple modular redundancy for FPGAs systems.
However, TMRTool is very specific to FPGAs designes and TMR-based
approaches, thus extensions to more generic patterns and architectures are
not considered.

19.2 Comparing Different Redundancy Approaches

One important aspect to consider when dealing with redundant architec-
tures is the probability of failure. In fact, its minimization is the main
objective when designing a safety critical and reliable system.

Let us consider the design of a computational component. The basic
approach to implement it, as shown in Figure 19.2, considers to describe
its behavior with a single module M . In this case, the module M operates
as a function fM , thus the outputs are deterministically computed over the
inputs i.e., fM(inputs) = outputs.

If we define the probability P (“the module M has a failure”) as FM ,
then the probability of failure of the computational component is FM , in
fact it depends only to M , and its malfunction represents a single point of
failure.

A different design of the single module M that relies on a TMR ap-
proach, as shown in Figure 19.2, consists in defining 3 copies of M where
each of their output is provided as input to the voter V . In this case, the
failure of the whole component can be achieved when: (i) 2 modules fail
(Expression 19.1), (ii) 3 modules fail (Expression 19.2), or (iii) the voter
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Single Module (SM)
FSM = FM

Triple Modular Redundancy (TMR)
FTMR = (1− FV ) ∗ (3F 2

M − 2F 3
M) + FV

Figure 19.2: Probability of failure example

fails (Expression 19.3).

(1− FV ) ∗
((3

2

)
∗ (1− FM ) ∗ F 2

M )+ (19.1)

(1− FV ) ∗
(
F 3

M

)
+ (19.2)

FV (19.3)

The next step consists in evaluating under which conditions a TMR ap-
proach is able to increase the system reliability. In fact, a TMR approach
is not always able to increase the overall reliability of the system, but this
depends on the specific setting where each component implementation is
going to operate. More specifically, the reliability analysis of different re-
dundant approach has to take into account the probability of failure of each
single module and voter. The 2d plot in Figure 19.3 shows when a TMR
approach delivers higher reliability (the red area) compared to a single
module (the blue area), by varying the probability of failure of computa-
tional modules (FM) and voters (FV ). This analysis shows that a TMR
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Figure 19.3: Single module (Blue) vs. TMR (Red)

approach is better when the voter is more reliable than the computational
module. This is, in general, a fair assumption because voter implementa-
tions are likely simpler than computational module ones, but there might
be some cases where this assumption does not hold.

A practical example of the reliability functions evaluations, presented
in [72], considers the comparison of different TMR schemes applied to
a computational chain of 6 modules, as represented in Figure 19.4. The
analysis consists in select the best architectures in the area where FV =
(10−5, 10−2) and FM = (10−6, 10−1). The result, shown in Figure 19.4,
identifies 5 different areas where each configuration (between (a) and (e))
dominates the others. For instance, if FV = 10−3 and FM = 10−4, then the
architecture with the highest reliability is (a), while when FM = 10−1 (e)
is the best choice.

An important aspect of the analysis shown in Figure 19.4 is that we are
not taking into account the specific behavior of each module M . Moreover,
each computational chain is composed of the same number of modules and
voters, thus having the same cost (without considering the cable cost). In
fact, the result of this evaluation shows how different redundancy patterns
may dramatically impact the reliability of the system.
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Architectures Considered Best Architectures Evaluation

Figure 19.4: Linear Architectures Comparison.
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Automated Analysis via SMT

In this Chapter, we propose a novel analysis flow that allows the system
designer to assess the reliability of redundant architectures, by means of
automated techniques for model-based safety assessment. MBSA provides
for a rich modeling framework, where a comprehensive set of architectural
solutions is described in an expressive formal logic of equality and unin-
terpreted functions (EUF). The framework is supported by automated
analysis techniques, that allow for the construction of Fault Trees and its
relative probabilistic computation. The backend engine, based on model
checking, has two key advantages. First, it is based on an expressive mod-
eling language, where it is possible to describe arbitrary redundancy archi-
tectures. Second, the flow is fully automated, and allows both to produce
fault trees, and to obtain a closed form representation for the reliability
function.

20.1 Formal Modeling via SMT

As described in Chapter 18, the application of a redundancy pattern can
increase the system reliability i.e., when part of it is not working properly.

The evaluation of a redundant system needs to take into account that
aspect, thus the modeling of the coexistence of “good” and “bad” behaviors.
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However, the architectural patterns evaluation belongs to the analyses that
are tipically performed early in the design phase i.e., when component
implementations and behaviors are not yet fully defined.

The SMT-based modeling approach that we defined in this Chapter
covers these needs, as it allows for an abstraction of the functional behavior
of the system. In particular, it is possible to define nominal and faulty
behaviors with two different functions, and integrate both functions in
the behavior of the extended components. The nominal function is then
shared with all faultless components, in order to guarantee that they have
a consistent behavior. Moreover, a faulty component can be described
without the addition of any constraint over the faulty function.

Figure 20.1 shows a graphical representation of a TMR with single voter.
Each module has two separate behaviors: nominal (MN), and faulty (MF ).
Those behaviors are described by relying on uninterpreted functions. The
coherence between each nominal behavior is guaranteed by the fact that
all modules are sharing the same uninterpreted function (green arrows in
Figure 20.1). The faulty part does not implement any specific behavior,
thus it can be local to each module. The voter VN has a well defined
implementation, and it does not need to be modeled with an uninterpreted
function because it is interpreted and well defined. The outputs of each
pair MN/MF and VN/VF are given to a multiplexer, which selects the right
signal according with the fault event (represented with the red arrows).
The input to each multiplexer can be masked with a can fail signal in
order to enable/disable the faulty behavior.

The formal model that describes the setting shown in Figure 20.1 is de-
fined using the SMV language extended with the support for uninterpreted
functions. Figure 20.2 presents the definition of the extended module.
More in detail, the module receives three parameters: 1. input: the input
value (of type Real); 2. can fail: the parameter that enables the compo-
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Figure 20.1: TMR component with EUF

nent to have internal failures; 3. nominal behavior : the behavior definition
in the nominal case. Within the definition of the extended component we
have: the variable failure that keeps track of the current behavior (nominal
or faulty), the definition of the faulty behavior, and the multiplexer (line
10 in Figure 20.2) that implements the switching between nominal and
faulty behavior.

Figure 20.3 presents the definition of the extended voter. More in detail,
this component receives five parameters: 1. input 1, input 2 and input 3 :
the input values (of type Real); 2. can fail: the parameter that enables
the component to have internal failures. In detail, the definition of the
extended voter is composed of: the variable local failure that keeps track
of the current behavior (nominal or faulty), the definition of the expected
behavior of the voter (line 10 ), the definition of the faulty behavior, and
the multiplexer (line 13 in Figure 20.2) that implements the switching
between nominal and faulty behavior. The masking with the can fail signal
is represented in line 18.
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1 MODULE MODULE 1 INPUT( input , c a n f a i l , n o m i n a l b e h a v i o r )
2
3 VAR
4 l o c a l f a i l u r e : boolean ;
5
6 FUN
7 f a u l t y b e h a v i o r : r e a l −> r e a l ;
8
9 DEFINE

10 f a i l u r e := l o c a l f a i l u r e & c a n f a i l ;
11
12 DEFINE
13 output : =
14 case
15 ! f a i l u r e : n o m i n a l b e h a v i o r ( i n p u t ) ;
16 TRUE : f a u l t y b e h a v i o r ( i n p u t ) ;
17 esac ;

Figure 20.2: An example of extended module (SMV language)

The modeling approach that we integrated into SMV language (with
the support for EUF theory) allows one to model complex computational
networks, where each component can be extended with a redundancy pat-
tern. More specifically, this modeling approach allows for extending any
computational network, represented as a Directed Acyclic Graph (DAG),
with any of the redundancy patterns examples listed in Figure 18.1.

20.2 The Miter Composition

The idea at the base of the analysis of redundant architectures is to evaluate
which component failure might affect the possibility to provide the correct
value. In order to do this, we need to compare the faulty system, modeled
as described in the previous section, with a reference architecture that
always operates as expected e.g., with no faulty behavior.

An architecture composed of a set of modules with nominal behavior
and can fail as parameters (as described in Figure 20.1) gives us the possi-
bility of describe both reference and faulty systems. In fact, the reference
architecture is instantiated by providing FALSE as can fail parameter to
all components, while it will be TRUE in case of a faulty description.
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1 MODULE VOTER 1 TINPUT( i n pu t 1 , i n p u t 2 , i n p u t 3 , c a n f a i l )
2
3 VAR
4 l o c a l f a i l u r e : boolean ;
5
6 FUN
7 f a u l t y b e h a v i o r : r e a l ∗ r e a l ∗ r e a l −> r e a l ;
8
9 DEFINE

10 v o t e d o u t p u t := case
11 i n p u t 1 = i n p u t 2 : i n p u t 1 ;
12 i n p u t 1 = i n p u t 3 : i n p u t 1 ;
13 i n p u t 2 = i n p u t 3 : i n p u t 2 ;
14 TRUE : i n p u t 3 ;
15 esac ;
16
17 DEFINE
18 f a i l u r e := l o c a l f a i l u r e & c a n f a i l ;
19
20 DEFINE
21 output : =
22 case
23 ! f a i l u r e : v o t e d o u t p u t ;
24 TRUE : f a u l t y b e h a v i o r ( i np u t 1 , i n p u t 2 , i n p u t 3 ) ;
25 esac ;

Figure 20.3: An example of extended voter module (SMV language)

Moreover, all nominal behaviors will be shared between the two instances,
in order to guarantee a coherence when no failures have occurred. This
system composition, as shown in Figure 20.4, is called miter. An impor-
tant aspect when comparing two architectures is to provide them the same
inputs, and evaluate the difference in the outputs. A common analysis
performed on the miter construction is to evaluate the whether reference
and faulty outputs are equal. Other possible analysis could be to consider
a wrong output only whether it differs to the expected one by a predefined
threshold.

A different approach on miter construction is based on a localized staged
composition, where the combination of faulty and reference module is called
stage. This composition, depicted in Figure 20.5, is similar to a standard
miter, considering can fail and nominal behavior instantiation, but in this
case faulty and reference inputs are kept separated. The next step is to
compose a system architecture, as the one represented in Figure 19.1, and
substituting each module with its stage composition such that faulty and
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Figure 20.4: Miter composition

reference ports match each other. Such composition is represented in Fig-
ure 20.6. The two approaches on miter composition are logically equivalent,
in fact they differ only on components displacement. However, the staged
miter combines reference and faulty components in the same container,
and this characteristic allows for a more refined stage composition. This
approach can provide an advantage on the verification performance, con-
sidering that each stage can be substituted with simplified implementations
as far as they preserve the original behavior. A technique that relies on the
staged miter composition to provide significant performance improvement
is exemplified in Chapter 21.
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Figure 20.5: Stage composition

20.3 Reliability Evaluation as Fault Tree Analysis

The analysis of a redundant architecture consists in evaluating all possible
components failure that may cause the whole system to produce a wrong
output. This approach matches one to one with Fault Tree Analysis. More-
over, the fault effects are modeled in order to guarantee that monotonicity
assumption does hold. In fact, a fault occurrence enables a completely un-
constrained behavior, which means that even the nominal one is allowed.
In this way, the monotonicity assumption is satisfied by construction.

Given the miter construction of the TMR in Figure 18.1a, we
want to perform a Model-Based Fault Tree Analysis with “two or
more outputs of the TMR faulty are different from the outputs of
the TMR perfect” as Top Level Event. The analysis will give us
the Minimal Cutsets MCSTMR111 = {{M1.fault,M2.fault}, {M1.fault,
M3.fault}, {M2.fault,M3.fault}, {V1.fault}}. The results, represented
by the Fault Tree in Figure 20.7, shows that the failure of the
voter V1 represents a single point of failure. Such condition,
can be though improved by relying on a configuration with triple
voter e.g., the pattern in Figure 18.1m. In this case, the MCS
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Figure 20.6: Miter composition (stage level)

are MCSTMR123 = {{M1.failure, M2.failure}, {M1.failure, M3.failure},
{M2.failure,M3.failure}, {V1.failure, V2.failure}, {V1.failure, V3.failure},
{V2.failure,V3.failure}}. The results confirm the increase in system relia-
bility, with the failure of the voter V1 that is no more a single point but
now it needs to be combined with either V2 or V3 in order to obtain a
wrong output value.

20.3.1 From Fault Tree to Reliability Function

In this section we analyze in detail the techniques used to carry out safety
analysis and extract the reliability function that characterizes an architec-
tural description.

Symbolic reliability computation

The algorithm we have described in Section 6.2 for the numerical compu-
tation of system reliability can be extended to carry out the support for a
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Figure 20.7: Fault Tree for TMR 1V 111 configuration

symbolic evaluation, i.e. automatically compute the reliability function in
analytical form. In particular, each parameter of this function is a symbolic
variable representing the failure probability of a single component.

Considering the BDD represented in Figure 20.8, the application of the
method in Section 6.2 by relying on symbolic variables instead of numerical
values, will provide the equation (20.1). This result represents the relia-
bility function describing the probability of failure of the TMR, assuming
that fault events are independent.

P (FV 1) +
(1− P (FV 1))∗(P (FM1) ∗ P (FM2)+

P (FM1) ∗ (1− P (FM2)) ∗ P (FM3)+
(1− P (FM1)) ∗ P (FM2) ∗ P (FM3))

(20.1)

The reliability function for a TMR-based architecture becomes in-
tractable to compute with manual techniques even with a simple chain
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Figure 20.8: BDD representation of the Fault Tree in Figure 20.7

composed of 2 modules. As an example, Equation (20.2) represents the
reliability function computed for the configuration V111 (Figure 18.1a)
followed by V001(Figure 18.1b). This formula has been obtained automat-
ically by using the symbolic computation techniques of the probability of
failures (and then simplified with a symbolic tool in order to make it more
compact).

Fsys(Fm, Fv) =Fv + 2 ∗ Fm ∗ Fv + 6 ∗ F 2
m − 16 ∗ F 4

m ∗ F 2
v +

− 10 ∗ Fv ∗ F 2
m − 4 ∗ F 6

m ∗ F 2
v − 2 ∗ Fm ∗ F 2

v +

+ 4 ∗ F 2
m ∗ F 2

v + 4 ∗ F 3
m ∗ F 2

v + 14 ∗ F 5
m ∗ F 2

v−

+ 4 ∗ F 3
m − 9 ∗ F 4

m + 25 ∗ Fv ∗ F 4
m+

+ 12 ∗ F 5
m − 26 ∗ Fv ∗ F 5

m − 4 ∗ F 6
m + 8 ∗ Fv ∗ F 6

m

(20.2)

Computing the symbolic reliability function allows us to compare dif-
ferent architectural configurations independently of the specific values of
failure probability. Moreover, the generation of the parametric reliabil-
ity function allows us to evaluate different modules that implement the
same architecture. As an example, let us consider three different modules,
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M1, M2 and M3, that provide the same capability in terms of functional
computation but using different implementations. In this scenario, the
symbolic computation allows us to express dependencies between failure
probability of different modules. For instance, a setting where the proba-
bility of failure of M1 (i.e. Pf(M1)) is equal to FM1, Pf(M2) = 7/8 ∗ FM1

and Pf(M3) = 5/8 ∗ FM1, can be easily expressed in order to evaluate the
overall reliability. Equation (20.3) shows an example of the generated re-
liability formula, where the failure probability of M1 is k times the failure
of other modules.

Fsys(Fm, Fv, k) =Fv + 2 ∗ Fm ∗ Fv + 2 ∗ F 2
m − 4 ∗ Fv ∗ F 2

m − 4 ∗ F 4
m ∗ k2−

+ 4 ∗ F 6
m ∗ k2 − 2 ∗ Fm ∗ F 2

v − 2 ∗ F 4
m ∗ F 2

v +

+ 2 ∗ F 2
m ∗ F 2

v + 2 ∗ F 3
m ∗ F 2

v + 4 ∗ k ∗ F 2
m + 8 ∗ F 5

m ∗ k2+

− 16 ∗ Fv ∗ F 5
m ∗ k2 − 10 ∗ k ∗ F 4

m ∗ F 2
v − 6 ∗ Fv ∗ k ∗ F 2

m+

− 4 ∗ F 4
m ∗ F 2

v ∗ k2 − 4 ∗ F 6
m ∗ F 2

v ∗ k2 + 2 ∗ k ∗ F 2
m ∗ F 2

v +

+ 2 ∗ k ∗ F 3
m ∗ F 2

v + 6 ∗ k ∗ F 5
m ∗ F 2

v + 8 ∗ Fv ∗ F 4
m ∗ k2+

+ 8 ∗ Fv ∗ F 6
m ∗ k2 + 8 ∗ F 5

m ∗ F 2
v ∗ k2 − 4 ∗ k ∗ F 3

m+

− 2 ∗ Fv ∗ F 3
m + 2 ∗ Fv ∗ k ∗ F 3

m − F 4
m − 4 ∗ k ∗ F 4

m+

+ 3 ∗ Fv ∗ F 4
m + 14 ∗ Fv ∗ k ∗ F 4

m + 4 ∗ k ∗ F 5
m+

− 10 ∗ Fv ∗ k ∗ F 5
m

(20.3)

20.4 Reliability Functions Evaluation

This Section proposes a set of evaluations on chains of sequential TMR
modules with 1 and 2 voters. The idea is to arbitrarily define an array of
TMR configurations that represents the pattern that have to be consecu-
tively applied. For each of these patterns we generate the reliability func-
tion parameterized by Fm = (1−Rm) and Fv = (1−Rv), which represent
the failure probability for modules and voters. Moreover, the reliability
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Figure 20.9: 3D view for 1 voter comparison

functions are generated in Matlab format and stored together in order to
provide a reliability function library of known architectural patterns.

This setting allows us to easily compare the reliability of architectures.
For instance, considering the patterns described in Table 20.1, we can com-
pare them together and generate the chart shown in Figure 20.10a. This
view highlights, for each pair of values for Fm and Fv, the best configura-
tion. Moreover, this approach allows for the generation of very informative
artifacts. In particular, with our approach it is possible to provide a 3-
dimensional view of the comparison between chains of TMR with 1 voter.
This view is shown in Figure 20.9 and it allows for a clear interpretation
of system reliability when varying the probability of failure of each com-
ponent.

One voter per stage, uniform distribution

The analysis of the TMR with 1 voter consists in evaluating chains of length
8 with patterns of length 4. Moreover, we explicitly added the configura-
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tions studied in [72] in order to have a direct comparison with the previous
results. The outcome of this analysis is presented in Figure 20.10a where
each (colored) area expresses that a specific configuration is better than the
others in terms of system reliability. The configurations in Figure 20.10a,
explained in Table 20.1, confirm the results presented in previous work,
and highlight the power of our approach.

By analyzing the results, we see from Figure 20.10a that the configura-
tions that consider multiple outputs from the voter (e.g. the configurations
in Figure 18.1e, 18.1f and 18.1g) are not more reliable than the others, for
the considered reliability values.

One voter per stage, non-uniform distribution

As we described in Section 20.3, it is possible to relax the assumption that
all modules have the same failure probability. In this way, it is possible
to accommodate the trade-off between cost and reliability (module with
higher reliability may come at the price of higher cost). In this scenario,
we are able to provide the evaluation of redundant systems characterized by
non-uniform failure probability for each module. Similarly to the analysis
for uniform probability, in Figure 20.10b and Table 20.2, we report the
comparison between TMR with (7/8)∗Fm for M1, where M1 is the left-side
module for each configuration in Figure 18.1. The results of this analysis
show that, when the module 1 has higher reliability with respect to the
others, the best configurations are the ones shown in Figures 18.1a, 18.1d
and 18.1c. This result can be explained by the fact that M2 and M3 are
less reliable than M1, and in this case the voter is more effective on the
modules that have lower reliability.
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Two voters per stage, uniform distribution

Similarly to the analysis for 1 voter, we performed a comparison between
configurations that consider TMR with 2 voters. The results are reported
in Figure 20.10c, with details in Table 20.3. The results of the analysis
is similar to the case with 1 voter. In particular, when the reliability of
the voter increases the configurations switch gradually from the one in
Figure 18.1l (moderate use of voters) to the one in Figure 18.1i (intensive
use of voters).

Two voters per stage, non-uniform distribution

The analysis on the reliability of TMR chains with 2 voters and non-
uniform probability considers the case when one voter has higher reliability
with respect to the other. In detail, we analyze the case of (1/2)∗Fv for V1,
where V1 is the left-side voter for each configuration in Figure 18.1. The
higher reliability of the left-side voter imposes the use of configurations
that concentrate the computation on this part (left-side) of the TMR, (in
particular we are referring to the one shown in Figure 18.1h). When Rv

decreases, the best configurations are the ones that minimize the use of
voters, and in particular the ones shown in Figures 18.1j, 18.1k and 18.1l.

One voter vs. two voters per stage

An interesting view about the chains of TMR is the comparison between
1 and 2 voters per stage. In particular, we use the standard evaluation
in the area of 10−5 ∼ 10−2 for x and y axes, as for previous analyses.
The results of the evaluation are presented in Figure 20.11a, and they
are explained in Table 20.5. In this case, we highlight the difference in the
order of magnitude of reliability between the two approaches. In particular,
Figure 20.11b shows in red the area where 1 voter is better, and in blue
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the area where it is worse. The z axis of this plot represents the value
of the difference between two sets of configurations. Analyzing such view,
we can see that the approach with 2 voters is clearly better when the
reliability of the module is reasonably lower than the reliability of the
voter. Differently, when the two reliabilities are comparable, the difference
between the approaches is negligible.

System unreliability, proportional evaluation

This analysis evaluates system reliability when varying the ratio between
Rv and Rm, with Rv fixed to 10−5. In this work we propose the same evalu-
ation introduced in [87] in order to compare our automated approach with
previous results. The configurations with 1, 2 and 3 voters are described
in detail in Table 20.6. The results of this analysis are reported in Fig-
ure 20.12, where it is shown that the configuration with 3 voters performs
better than the others. Moreover, it can be noticed that the standard 1
voter setting is an interesting choice only if the reliability of the voter is
not less than 102 ∗Rm.

System reliability, varying non-uniform probabilities

The evaluation of system reliability is clearly influenced by the probabil-
ity distribution of failures that characterize each single component. In
view of this fact, we propose an evaluation of system reliability by varying
non-uniform distributions for two specific settings. In detail, we analyze
the standard TMR chain with 1 voter, described in Table 20.2 configu-
ration (h), and one chain with 2 voters explained by configuration (c) of
Table 20.4.

In the first case, we consider the probability of failure for M1 as k ∗Fm,
with k varying from 1/2 to 2. Figure 20.13a shows the results of this
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analysis. It is possible to notice that such TMR configurations have an
impact on system reliability only when Fm is significantly bigger than Fv.
In particular, the probability of system failure is influenced only when
Fm > 102 ∗ Fv.

Figure 20.13b shows the evaluation on the configuration with 2 voters.
In this case, we consider the probability of failure for V1 as k ∗ Fv, with k

varying from 1/4 to 4. Differently from previous analysis, the impact on
the reliability of the system is significant only when Fm < 10 ∗ Fv. This
result can be explained by the fact that, in this area, the reliability of the
voter is close to the reliability of the module.
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(a) 1 voter: uniform probability (b) 1 voter: non-uniform probability

(c) 2 voters: uniform probability (d) 2 voters: non-uniform probability

Figure 20.10: Find best for 1 and 2 voters, uniform and non-uniform probability
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Color Array of configuration
(a) blue [b,b,b,b,b,b,b,b]
(b) blueberry [b,b,b,b,c,d,b,c]
(c) lightblue [b,c,d,b,c,d,b,c]
(d) green [d,c,b,a,d,c,b,a]
(e) yellow [d,a,d,a,d,a,d,a]
(f) orange [a,a,d,a,a,a,d,a]
(g) red [a,a,a,a,a,a,a,a]

Table 20.1:
Configurations for 1 voters
uniform probability

Color Array of configuration
(a) blue [d,d,d,d,d,d,d,d]
(b) blueberry [d,d,d,c,d,d,d,c]
(c) lightblue [d,c,d,b,d,c,d,b]
(d) green [d,b,d,c,d,b,d,c]
(e) yellow [d,c,b,a,d,c,b,a]
(f) orange [d,a,d,a,d,a,d,a]
(g) red [a,a,d,a,a,a,d,a]
(h) darkred [a,a,a,a,a,a,a,a]

Table 20.2:
Configurations for 1 voter
non-uniform probability

Color Array of configuration
(a) blue [l,l,l,l,l,l,l,l]
(b) lightblue [l,l,k,j,l,l,k,j]
(c) green [l,k,j,k,l,k,j,k]
(d) yellow [i,i,i,l,i,i,i,l]
(e) orange [i,i,i,i,i,i,i,i]

Table 20.3:
Configurations for 2 voters
uniform probability

Color Array of configuration
(a) blue [l,l,l,l,l,l,l,l]
(b) lightblue [k,k,j,k,k,j,k,k]
(c) green [j,k,l,j,k,l,j,k]
(d) yellow [h,l,h,h,l,h,h,l]
(e) orange [h,h,h,h,h,h,h,h]

Table 20.4:
Configurations for 2 voter
non-uniform probability
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(a) 1 and 2 voters comparison (b) 1 voter vs 2 voters (blue means 2v is better)

Figure 20.11: 1 voter vs 2 voters

Color Array of configuration
(a) blue [b,b,b,b,b,b,b,b] (1v)
(b) lightblue [b,b,b,b,c,d,b,c] (1v)
(c) green [l,k,j,k,l,k,j,k] (2v)
(d) yellow [i,i,i,l,i,i,i,l] (2v)
(e) orange [a,a,a,a,a,a,a,a] (1v)

Table 20.5: Configurations for 1 voter vs. 2 voters
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Figure 20.12: System reliability: proportional evaluation

Identification Description Array of configurations
(a) standard 1 voter [a,a,a,a,a,a] (1v)
(b) standard 3 voters [m,m,m,m,m,m] (3v)
(c) 1 voter with 1 fanout [b,c,d,b,c,d] (1v)
(d) 1 voter with 1 fanout [b,c,d,d,c,b] (1v)
(e) 2 voters with 1 fanout [k,l,j,k,l,j] (2v)
(f) no redundancy

Table 20.6:
Configurations for system reliability:
proportional evaluation
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(a) Varying Fm for M1

(b) Varying Fv for V1

Figure 20.13: System reliability when varying non-uniform probability
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21

CutSets computation via Predicate
Abstraction

A problem of the flow described in previous Chapter is the use of parameter
synthesis over SMT to construct the set of CSs, and in a combinatorial
system this can be reduced to an All-SMT problem that generates a DNF
of the result. Thus, its performance is related to the number of cut sets, and
in realistic cases this enumeration can be highly expensive. We now present
a method to overcome this bottleneck. The idea is to rely on a suitable
predicate abstraction, so that a unique, SMT-based quantifier elimination
can be transformed in a BDD-based quantification on a Boolean formula.

We first notice that the miter construction relies on identical copies of
the architecture: the architecture under analysis, and the reference archi-
tecture, constrained not to fail. There is a clear structural correspondence:
every fallible module in the architecture under analysis has a corresponding
infallible module in the reference architecture.

The optimized method for CS construction exploits this structural cor-
respondence by applying a predicate abstraction on input and output ports
of each stage, while mirroring the fault variables i.e., they are already in
the Boolean domain.

This abstraction can be intuitively represented by connecting one addi-
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(a) AS1 (b) AS4 (c) AS6

Figure 21.1: Abstract Stages Example

(a) Concrete Miter (b) Abstract Miter

Figure 21.2: Miter Approaches

tional component to input and output ports of each stage, as represented
in Figure 21.1. The component that preprocesses the input signal, called
“Concretizer” (modules C1, C4, and C6), receives the predicates as input
and provides as output an instance of the concrete signals that satisfies
such predicates. Analogously, the output signals are provided to an “Ab-
stractor” (modules A1, A4, and A6) that gives as output the assignment to
the predicates.

Considering the miter composition at the stage level described in Chap-
ter 20, and linking its outputs to an abstractor, the resulting system, shown
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in Figure 21.2a, is called concrete miter. Replacing then each stage with its
abstract counterpart (as in Figure 21.1), we obtain a pure Boolean model.
The successive addition of an abstractor that preprocesses the inputs al-
lows us to obtain an architecture that has the same interface as the concrete
one. This model, depicted in Figure 21.2b, is called abstract miter.

The significance of the abstract model results from the fact that, under
some preconditions, it has the very same cut sets as the concrete one. In
fact, in this chapter we prove an equivalence theorem that supports the
overall correctness. The theorem requires specific conditions on the sets
of predicates used in the abstraction, together with the proof that the
selected predicates satisfy these conditions for all the modules used in the
architecture.

21.1 Formal Characterization

We now introduce a formal notation to describe architectures, which al-
lows for the definition of redundant and reference systems, or their miter
composition.

The base block of the formalism describing a redundant system is the
Basic Combinatorial Component. Defined in 21.1.1, it models a system
with input and output ports, a set of faults signals and an SMT formula.
Intuitively, such components do not have time evolution (i.e., they are
combinatorial) and the values of the output ports are computed only over
current inputs and faults.

Definition 21.1.1 (Basic Combinatorial Component). A basic combina-
torial component is a tuple 〈 ~PI , ~PO, F, π〉, where:

• ~PI and ~PO are the terms representing respectively input and output
ports, and each of them can have Boolean (B) or Data (D) type.
τ(~PI/O[i]) represents the type of the i-th input/output port;
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• F is the set of faults events of Boolean type;

• π( ~PI , ~PO, F ) is an SMT formula over ports and faults, where each term
belongs to B or D.

More complex architectures are obtained by combining Basic Compo-
nents into Combinatorial Components, as stated in Definition 21.1.2. This
notation uses two composition operators: sequential composition (.), and
parallel composition (|). The former relates components that are connected
in a sequential fashion, linking outputs of the first one with inputs of the
former. Parallel composition, on the other hand, juxtaposes the set of
ports from different components, which run in parallel.

Definition 21.1.2 (Combinatorial Component). A combinatorial compo-
nent CC is defined either by:

• Basic Combinatorial Component (Definition 21.1.1);

• CC . CC as sequential composition (Definition 21.1.4);

• CC | CC as parallel composition (Definition 21.1.5).

The sequential composition can only by applied when two components
are compatible. This notion is formally defined in 21.1.3, and it essentially
prescribes that two components can be connected if the have the same
inputs/outputs cardinality, and if their ports are one-by-one of the same
type.

Definition 21.1.3 (Sequential compatibility). Given two combinatorial
components M ′ = 〈 ~P ′I , ~P ′O, F ′, π′〉 and M ′′ = 〈 ~P ′′I , ~P ′′O, F ′′, π′′〉, they
are sequentially compatible, denoted M ′  M ′′, iff | ~P ′O| = | ~P ′′I | and
∀
i∈{0..| ~P ′O|}

τ(P ′O[i]) = τ(P ′′I [i]).

Definition 21.1.4 formalizes the sequential composition of two compo-
nents S ′ and S ′′. The idea is to connect the output ports of S ′ to the input
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ports of S ′′. The resulting component S has the same input ports as S ′,
the same output ports of S ′′ and the union of the faults of S ′ and S ′′.

Definition 21.1.4 (Sequential composition semantics). Given two com-
binatorial components M ′ = 〈 ~P ′I , ~P ′O, F ′, π′〉 and M ′′ = 〈 ~P ′′I , ~P ′′O, F ′′, π′′〉,
such that M ′  M ′′, the sequential composition M = M ′ . M ′′, where
M = 〈~P , F, π〉, is defined as:

• ~PI = ~P ′I ;

• ~PO = ~P ′′O;

• F = F ′ ∪ F ′′;

• π( ~PI , ~PO, F ) = ∃ ~P ′O, ~P ′′I : π′( ~P ′I , ~P ′O, F ′) ∧ π′′( ~P ′′I , ~P ′′O, F ′′)∧ ~P ′O = ~P ′′I .

Similarly to the sequential case, the parallel composition of two compo-
nents is defined in 21.1.5, however in this case no compatibility conditions
are necessary.

Definition 21.1.5 (Parallel composition semantics). Given two combi-
natorial components M ′ = 〈 ~P ′I , ~P ′O, F ′, π′〉 and M ′′ = 〈 ~P ′′I , ~P ′′O, F ′′, π′′〉,
such that F ′ ∩ F ′′ = ∅, the parallel composition M = M ′|M ′′, where
M = 〈~P , F, π〉, is defined as:

• ~PI = ~P ′I | ~P ′′I ;

• ~PO = ~P ′O | ~P ′′O;

• F = F ′ ∪ F ′′;

• π( ~PI , ~PO, F ) = π′( ~P ′I , ~P ′O, F ′)∧ π′′( ~P ′′I , ~P ′′O, F ′′).

This framework enables the definition of any tree- or DAG-shaped struc-
ture. However, relying solely on parallel and sequential compositions might
seems to be limiting in order to reach this level of expressiveness. However,
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some special basic components can used to connect inputs and outputs
ports in a different fashion than just parallel and sequential compositions.
In fact, we identified three components to cover the following purposes:
duplication of values (module D), simple propagation of input values (I
module, a.k.a. identity) and arbitrary reconfiguration of signals (R mod-
ule). The application of this modeling approach is shown in the Equa-
tion 21.1, which represents the system in Figure 19.1. In this case, we use
D modules in order to duplicate outputs of the M1 and M2 components.

(M1|M2) . (D|D) . (M3|M4|M5) . M6 (21.1)

Giving the intuition of how a Triple Modular redundancy can be ex-
pressed with the formalism introduced here, Example 21.1.1 describes the
details of a possible encoding of a single module triplication, as in Fig-
ure 20.1.

Example 21.1.1 (TMR as a Combinatorial Component). Giving a single
computational module with 1 input and 1 output, which behaviour is de-
fined by the uninterpreted function BM : D→ D, then its Triple Modular
Redundancy with 3 voters can be represented as a combinatorial compo-
nent T = 〈 ~PI , ~PO, F, π〉 such that:

• ~PI = [i1, i2, i3];

• ~PO = [o1, o2, o3];

• F = {fM1, fM2, fM3, fV 1, fV 2, fV 3};

• π( ~PI , ~PO, F ) = ∃BM : D→ D,∧i=1..3 oi = TMR( ~PI , BM , F, fV i).
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and where the formula TMR is defined as:

TMR( ~PI , BM , F, fV ) := V (M(i1, BM , fM1),M(i2, BM , fM2),
M(i3, BM , fM3), fV )

M(i, BM , fM) := ¬fM → BM(i)
V (i1, i2, i3, fV ) := ¬fV → BV (i1, i2, i3)
BV (i1, i2, i3) := if i1 = i2 then i1 else e1

e1 := if i1 = i3 then i1 else e2

e2 := if i2 = i3 then i2 else i3

Intuitively, each fault variable fMi, when set to false, binds the output
of each module to the output of the function BM , while they leave them
free when assigned to true. The voters are described in a similar way, but
in this case the behaviour is explicitly defined as BV . �

As described earlier in this Chapter, of particular interest is to generate a
stage composition out of a combinatorial component. This transformation
is a special case of the parallel composition, and it is formally defined in
21.1.6.

Definition 21.1.6 (Stage composition). Given a combinatorial component
M = 〈 ~PI , ~PO, F, π〉 its stage composition SM = 〈 ~P ′′I , ~P ′′O, F ′′, π′′〉, consider-
ing M ′ = 〈 ~P ′I , ~P ′O, F ′, π′〉 as a copy of M , is defined as:

• ~P ′′I = ~PI | ~P ′I ;

• ~P ′′O = ~PO | ~P ′O;

• F ′′ = F ;

• π′′( ~P ′′I , ~P ′′O, F ′′) = ∃F ′ : π( ~PI , ~PO, F )∧ π′( ~P ′I , ~P ′O, F ′)
∧
f ′∈F ′ f

′ = ⊥.
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21.1.1 Systems equivalence

We now define some algebraic properties of combinatorial components.
Two combinatorial components are equivalent, as stated in Definition
21.1.7, if their relational formulas have the same value for each assignment
to input and output ports, and faults.

Definition 21.1.7 (System equivalence). Given two combinatorial compo-
nents M ′ = 〈 ~P ′I , ~P ′O, F ′, π′〉 and M ′′ = 〈 ~P ′′I , ~P ′′O, F ′′, π′′〉, such that F ′ = F ′′,
~P ′I = ~P ′′I , and ~P ′O = ~P ′′O, they are called system equivalent, denoted
M ′ ≡M ′′, if and only if
∀M = 〈pI1, . . . , pIn, pO1, . . . , pOm, f1, . . . , fIk〉 : π′(M)⇐⇒π′′(M).

Important result that allow us to manipulate the combinatorial compo-
nents in order to prove the soundness of our approach is represented by
the Lemmas of reduction (21.1.1), parallel (21.1.2), and invertion (21.1.3)
equivalence. In particular, Lemma 21.1.1 states that the if two combinato-
rial components are equivalent, it is possible to sequentially combine them
with a third component and preserve the equivalence. Lemma 21.1.2 states
a similar result for parallel composition.

Lemma 21.1.1 (Reduction equivalence). Given the combinatorial compo-
nents S, S ′, and S ′′, if S ′ ≡ S ′′ then S . S ′ ≡ S . S ′′ and S ′ . S ≡ S ′′ . S.

Lemma 21.1.2 (Parallel equivalence). Given the combinatorial compo-
nents S ′1, S ′′1 , S ′2, S ′′2 , if S ′1 ≡ S ′′1 and S ′2 ≡ S ′′2 then S ′1|S ′2 ≡ S ′′1 |S ′′2 .

The invertion equivalence Lemma, defined in 21.1.3, shows that the
application of sequential and parallel composition can be inverted when the
sequential compatibility allows for the former composition to be applied.

Lemma 21.1.3 (Invertion equivalence). Given the combinatorial compo-
nents S ′1, S ′′1 , S ′2, S ′′2 , if S ′1  S ′′1 and S ′2  S ′′2 then S ′1|S ′2 . S ′′1 |S ′′2 ≡
S ′1 . S

′′
1 |S ′2 . S ′′2 .
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Abstraction and Concretization

We now define two special types of components, whose purpose is to
formalize the abstraction. Specifically, the abstractor component (Defini-
tion 21.1.8) is used to translate a set of concrete (data) values into their ab-
stract counterpart, whereas the concretizer component (Definition 21.1.9)
generates instances of concrete values satisfying the predicates.

Definition 21.1.8 (Abstractor). A combinatorial component
A = 〈 ~PI , ~PO, F, α〉 is an abstractor iff:

• F = ∅;

• ~PI is the vector of input ports belonging to D;

• ~PO is the vector of output ports belonging to B;

• α( ~PI , ~PO, ∅) is an SMT formula over input and output ports.

Definition 21.1.9 (Concretizer). A combinatorial component
C = 〈 ~PI , ~PO, F, γ〉 is a concretizer iff:

• F = ∅;

• ~PI is the vector of input ports belonging to B;

• ~PO is the vector of output ports belonging to D;

• γ( ~PI , ~PO, ∅) is an SMT formula over input and output ports.

By way of abstractors and concretizers, we can express the abstraction
of a component M as the sequential composition C . M . A, and in the
Example 21.1.2 we show how to apply the abstraction to a stage composi-
tion.
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Example 21.1.2 (Stage abstraction). As described in Chapter 20, a miter
based approach relies on the comparison between faulty and reference (i.e.,
faultless) models, and this concept is also applied to the predicates used to
abstract stage compositions. For instance, if we consider the combinatorial
component T as in the Example 21.1.1, and its stage composition ST , then
the abstract stage will be C . ST . A where:

• γ([pi1, pi2, ..., pi2n], [po1, po2, ..., pon], ∅) = ∧
i=1..n poi⇐⇒pii = pi(n)+i

• α([pi1, pi2, ..., pim], [po1, po2, ..., po2m], ∅) = ∧
i=1..m pii⇐⇒poi = po(m)+i

The stage composition, as in Definition 21.1.6, represents a specializa-
tion of a parallel composition between a module M and its copy M ′, where
the fault variables of the second one are imposed to be false. Intuitively,
if M has m output ports, then SM has 2m of them, where the ports from
1 to m are the outputs from M and the ones from m + 1 to 2m are the
reference values computed by the faultless component M ′.

�

Now we now can formally define concrete and abstract miters, and in
the next Section we show how these two systems produce the same result
out of the minimal cutsets computation.
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21.2 Proof of correctness

In order to show the soundness of our approach, we prove that, given a
system composed of concrete modules, it is possible to substitute each
individual module with its abstract counterpart. This result is stated in
Theorem 21.2.1, which allows us to generate an equivalent network of com-
binatorial components by using only abstract modules. Namely, it enables
substitution of a concrete module with its abstract counterpart, provided
that the application of abstraction and concretization on inputs preserves
the behavior of the outputs in the abstract domain, as formally defined by
the hypothesis.

Theorem 21.2.1 (Modular abstraction equivalence). For all i ∈ {1..n},
for all j ∈ {1..mi} let Si,j be combinatorial components and let Ci,j be con-
cretizers. For all i ∈ {1..(n+ 1)}, for all j ∈ {1..mi} be Ai,j abstractors.
Let Ci,j  Si,j and Si,j  Ai,j.

Let
C(S) = Ln . . . . . L2 . L1 . A1

A(S) = An+1 . CLAn . . . . . CLA2 . CLA1

where

Li =


Si,1
Si,2
· · ·
Si,mi

 , Ai =


Ai,1

Ai,2
· · ·
Ai,mi

 ,CLAi =


Ci,1 . Si,1 . Ai,1

Ci,2 . Si,2 . Ai,2
· · ·

Ci,mi
. Si,mi

. Ai,mi


If for all i ∈ {1..n}, for all j ∈ {1..mi} it holds that

Ai+1,j . Ci,j . Si,j . Ai,j ≡ Si,j . Ai,j (21.2)

then
C(S) ≡ A(S)
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Proof. Parallel case

First, we need to prove that if Equation 21.2 holds then that property can
be lifted to layers. For all i ∈ {1, . . . , n}

Li . Ai ≡ Ai+1 . Ci . Li . Ai (21.3)

Base case

When mi = 1, we have S1 . A1 ≡ A2 . C1 . S1 . A1, that follows from the
hypothesis of the theorem.

Step case

Assuming that the property of Equation 21.3 holds for n, then if Si,n+1 .

Ai,n+1 ≡ Ai+1,n+1 . Ci,n+1 . Si,n+1 . Ai,n+1 for Lemma 21.1.2 we obtain


Si,1
Si,2
· · ·
Si,n

 .

Ai,1

Ai,2
· · ·
Ai,n


Si,n+1 . Ai,n+1

≡


Ai+1,1

Ai+1,2
· · ·

Ai+1,n

 .

Ci,1
Ci,2
· · ·
Ci,n

 .

Si,1
Si,2
· · ·
Si,n

 .

Ai,1

Ai,2
· · ·
Ai,n


Ai+1,n+1 . Ci,n+1 . Si,n+1 . Ai,n+1

(21.4)

then, for Lemma 21.1.3, Equation 21.5 holds.


Si,1
Si,2
· · ·
Si,n


Si,n+1

.


Ai,1

Ai,2
· · ·
Ai,n


Ai,n+1

≡


Ai+1,1

Ai+1,2
· · ·

Ai+1,n


Ai+1,n+1

.


Ci,1
Ci,2
· · ·
Ci,n


Ci,n+1

.


Si,1
Si,2
· · ·
Si,n


Si,n+1

.


Ai,1

Ai,2
· · ·
Ai,n


Ai,n+1

(21.5)

172



21.2. PROOF OF CORRECTNESS

Sequential case

We now prove, for all n, that

Ln . Ln−1 . . . . . L2 . L1 . A1 ≡
An+1 . (Cn . Ln . An) . (Cn−1 . Ln−1 . An−1) . . . . . (C2 . L2 . A2) . (C1 . L1 . A1)

(21.6)

Base case

When n = 1, we have L1 .A1 ≡ A2 .C1 .L1 .A1, that follows directly from
Equation 21.3.

Step case

Assume that the property of Equation 21.6 holds for n, by Lemma 21.1.1
it is possible to prepend Ln+1.

Ln+1 . Ln . . . . . L2 . L1 . A1 ≡

Ln+1 . An+1 . Cn . Ln . An . Cn−1 . . . . . L1 . A1
(21.7)

by Lemma 21.1.1, it is possible to prepend Ln+1:

Ln+1 . Ln . . . . . L2 . L1 . A1 ≡

Ln+1 . An+1 . Cn . Ln . An . Cn−1 . . . . . L1 . A1
(21.8)

then if Ln+1 . An+1 ≡ An+2 . Cn+1 . Ln+1 . An+1 for Lemma 21.1.1 we
obtain

Ln+1 . An+1 . Cn . Ln . An . Cn−1 . . . . . L1 . A1 ≡

An+2 . Cn+1 . Ln+1 . An+1 . Cn . Ln . An . Cn−1 . . . . . L1 . A1
(21.9)
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21. CUTSETS COMPUTATION VIA PREDICATE ABSTRACTION

Equation 21.9 proves that the property of 21.6 holds also for n + 1, as
shown in Equation 21.10.

Ln+1 . Ln . . . . . L1 . A1 ≡
An+2 . Cn+1 . Ln+1 . An+1 . Cn . Ln . An . . . . . C1 . L1 . A1

(21.10)

The results stated in Theorem 21.2.1 is very general; it can be applied to
different abstractions, provided that the hypothesis of the theorem holds.
Most importantly, the proved equivalence in the formulas of abstract and
concrete systems guarantees also to obtain the same result for the MCS
computation. In fact, this computation is deterministic given a formal
model and a top level event, which in this case is expressed over the output
ports.
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Experimental Evaluation

In this Chapter we compare the two approaches described in this Part, in
particular the direct SMT verification against the BDD-based relying on
predicate abstraction technique.

22.1 The instantiation

We instantiate the framework described above using a specific abstrac-
tion that expresses, given a set of input and output ports, the equivalence
between each of the signals and the reference value. More precisely, let
us considering a stage with a reference component having in, on as input
and output ports, and a redundant module duplicating the signals with
i1, i2, i3, o1, o2, o3 as ports, our abstraction generates the predicates {(in =
i1), (in = i2), (in = i3)} as input, and {(on = o1), (on = o2), (on = o3)} as
output.

In order to use the results of Chapter 21, we must prove that the hy-
pothesis of Theorem 21.2.1 holds for the selected predicates on all the TMR
modules implementing the library. For this purpose, we relied on Math-
SAT5 [56] to prove that for each staged module, represented as πγ where
πα is its abstracted counterpart, the following property holds:
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For all I ∈ R and O,F ∈ B

πα(α(I), O, F )⇐⇒πγ(I, γ(O), F )

The generation of Fault Trees, in the form of Binary Decision Dia-
grams [47], provided the best performance by disabling dynamic reorder-
ing, and using a statically computed ordering, based on the topology of the
analyzed system. In detail, considering the example in Expression 21.1, the
ordering starts with faults and output predicates for the module M1, fol-
lowed by the variables of M2, then the ones from M3 (D modules do not
have variables), and so on.

The setting for the experimental evaluation comprises the generation
of the abstract modules, for each of the possible pair of nominal and re-
dundant components represented in Figure 18.1, and then caching their
machine representation. The time needed to perform such process is not
taken into account in the scalability evaluation, however this operation
takes on average 5 seconds with a maximum time of 10 seconds. The tar-
get of our evaluation consists in Fault Tree Analysis (generation of MCSs),
with a top level event stating that the output of the nominal network
differs from the redundant one. The library of abstract components con-
sists of 12 different redundancy configurations with 1, 2 and 3 voters per
stage. The system configuration for the standard methodology described
in Chapter 20, without predicate abstraction, is similar to the setting with
modular abstraction with the difference that each module is a concrete rep-
resentation with real variables and EUF functions. The algorithms used
in both cases are based on Fault Tree generation as proposed in Part II;
given the difference between concrete and abstract, in the first case we use
SMT-based techniques, whereas for the latter we use the BDD-based ones.
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Figure 22.1: Scalability evaluation on linear structures

22.2 Scalability Analysis

We compared the performance of the monolithic and compositional ap-
proaches on a set of benchmarks that randomly generates linear-, tree-
and DAG- like architectures. Whenever both techniques terminated, we
checked the correctness by comparing the Fault Trees. We ran the ex-
periments on an Intel Xeon E3-1270 at 3.40GHz, with a timeout of 1000
seconds, and a memory limit of 1 GB.

22.2.1 Linear Structures

We first analyzed the scalability of the approach on linear TMR structures.
The TMR chains experiments consider networks of length n with 1, 2 and
3 voters, with different combinations of structures. The results of this
comparison are presented in Figure 22.1: the x axis represents the length
of the chain, while on the y axis there is the time needed to compute the
MCS. The concrete generation reaches the timeout starting from a TMR
chain with 1 and 2 voters of length 20, while with 3 voters, it is not able to
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Figure 22.2: Tree (Red) and DAG (Blue) comparison

evaluate more than 10 stages within the timeout. The modular abstraction
approach is able to perform FTA in less than 110 seconds for a TMR chain
of length 140, both with 1, 2 and 3 voters.

The two and three voters schemas are much harder to deal with (as wit-
nessed by the relative degrade in performance of both techniques). In fact,
the presence of additional voters increases the number of fault variables,
and the overall number of Cutsets. In the case of compositional, partition-
ing helps to limit the impact on performance. However, the compositional
approach is vastly superior to the monolithic one which shows a significant
degrade in performance.

22.2.2 Scalability on Tree and DAG structures

We then analyzed tree and DAG diagrams, first considering the design
description presented in [5], that describes a DAG redundant structure as
shown in Figure 19.1. In this case, the modular abstraction technique is
able to perform FTA in 0.025 seconds, while the concrete case takes 4.5
seconds. Both methods construct the set of 102 MCS.
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In order to evaluate the performance of modular abstraction, we built
a random generator of Tree and DAG structures. The problems are gener-
ated by picking a module type from the set of possible ones, adding it to
the network with inputs selected from inputs of the system or outputs of
previously introduced modules, until the target system size is reached. In
order to be able to relate numbers of modules and verification complexity,
we imposed that the increase of system diameter between two consecutive
layers is at most two modules. This means that a random tree structure
with length 140 has a maximum diameter of 22 modules (i.e. max diameter
with n modules is 2 ∗

√
n− 1).

The set of possible components is defined with modules with 1, 2, and 3
inputs and a single output, in addition to the special components D, which
replicates the input to two equal set of outputs, and an identity module I.

The random generation of Tree and DAG networks allows us to compare
the performances of two approaches. Figure 22.2 shows a scatter plot of the
results for networks of size until 25, with red and blue points representing
respectively Tree and DAG architectures. The results of this test clearly
illustrate the improvement due to the abstraction, which is able to perform
the analysis in less than 1.5 seconds for each instance, with an average gain
in performance that is in the order of 102 (i.e. Gain (Min, Avg, Max) =
(2, 6 ∗ 102, 7 ∗ 103)).

The scalability evaluation of the modular approach in the case of Tree
and DAG structure is shown in Figure 22.3. In this chart, the x axis
represents the number of modules composing the network, while the y axis
shown the total time to compute the full set of MCS. The module count
in the case of DAG does not consider the components of type D or I, due
to the fact that they essentially express links between stages. The results
shows that the performance in the case of Linear, Tree or DAG structure
are almost comparable, in fact almost all the time is spent on the BDD
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Figure 22.3: Tree and DAG scalability: abstraction

quantification of predicates.
In the monolithic case, the bottleneck is clearly the AllSMT procedure

(with optimizations described in [37]), due to the excessive number of Cut-
sets. In the compositional case, the time for initializing the library accounts
in total for less than 1 minute. This cost is payed only once, and the nec-
essary abstractions can be cached. Once the library is initialized, the main
source of inefficiency is the generation of the BDD.
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Future Extensions

The main target for future extensions of this work is to allow for auto-
mated synthesis of redundant architectures. The idea consists in providing
a reference architecture, a set of constraints describing the leaf components
expected behavior, and an objective function. Out of these problem de-
scription, the methodology should provide a set of redundant architectures
that are Pareto optimal according with the objective and reliability func-
tions. In fact, a high level of reliability requires redundant components,
but each of them adds weight, and cost, to the entire system. Thus, the
best architecture is the one that reaches higher safety and reliability while
not exceeding weight and cost constraints.

Additional analyses will consider also optimal components displacement.
In fact, physical damage of a part of the system (e.g., a localized impact of
an object) may affect the functionality of the components that are installed
in the damaged area. If those components are part of the same redundant
system, then the physical damage would represent a single point of failure
e.g., common cause failure.

The techniques described in this Part can be also applied to the Relia-
bility Block Diagram (RBD) analysis. RBD is an inductive method used
to analyze system reliability, by representing it with parallel and sequen-
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tial sub-blocks. The analysis performed over RBD are directed to discover
the root causes of system failures by inspecting the relations between sys-
tem blocks. Further extensions of our techniques would either analyze a
given RBD, by adding the possibility to express abstract relations between
components, or producing the resulting RBD out of a given architecture,
by generating an abstract system that expresses only relations between
components.
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Part V

Tools and Integrated Processes





Introduction

Part II, III, and IV describe a set of techniques that aim at optimizing
different phases of the formal analysis of a safety critical system. This
target can be achieved in practice only by developing the tools that imple-
ment those techniques, and include them into a well defined formal process.
More specifically, in this work we extended a pre-existent tools architec-
ture, which provides symbolic model checking and contract-based design
capabilities. The resulting platform allowed us to apply these new features
to a set of real-world case studies.

In this Part we describe the verification toolset that represents the foun-
dations of this work, and how we have designed their extension in order to
define a comprehensive formal validation, verification, and safety assess-
ment platform.

The rest of Part V is structured as follows:

• Chapter 24 introduces the verification platforms that represent the
bases of this work;

• Chapter 25 describe the implementation choices for Minimal Cutsets
Computation algorithms, Contract-Based Safety Assessment, and Re-
dundant Architecture Analysis;

• Chapter 26 defines the formal process that covers all techniques dis-
cussed in this Thesis;
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• Chapter 27 concludes with the final remarks of this Part.

186



24

Verification Platforms

The techniques developed in this thesis build upon a complex tool archi-
tecture that has been developed since the introduction of the first version
of the NuSMV model checker in 1999. Improvements and extensions went
primarily through BDD and BMC based model checking, followed by the
integration with the MathSAT SMT solver that opened up to infinite states
verification. This resulted into the definition of nuXmv, a model checker
for finite and infinite states systems with the support for more recent ver-
ification techniques like IC3/PDR [43].

nuXmv, being a state of the art model checker [25], it is used as a
verification engine for a variety of formal verification tools. Most notably,
xSAP [27] provides model-based safety assessment such as Fault Tree Anal-
ysis and Fault Mode and Effect Analysis (FMEA) tables generation via
minimal cutsets computation. OCRA [54] implements a contract-based
paradigm that relies on temporal logic for the components contract defi-
nition. Figure 24.1 shows the relation between the aforementioned tools,
and in this Chapter we provide an overview of those verification tools.
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OCRA 24.5 xSAP 24.4

nuXmv 24.3nuXmv 24.3

NuSMV2 24.1NuSMV2 24.1
MathSAT 24.2MathSAT 24.2

CUDDCUDD MiniSATMiniSAT

Figure 24.1: Pre-existent Software Architecture

24.1 NuSMV

In 1999, the NuSMV model checker [53] was developed from a joint project
between Carnegie Mellon University (CMU) and FBK (formally, Istituto
per la Ricerca Scientifica e Tecnologica (IRST)). NuSMV is a BDD based
model checker that redesigns SMV [92] (Symbolic Model Verifier) with a
new software architecture and the support for LTL verification. The suc-
cessive NuSMV2 [51] open source project, in 2002 added the support for
SAT based invariant and LTL model checking. NuSMV2 implements stan-
dard falsification [24], induction [65], and interpolation [93] based model
checking.

24.2 MathSAT

The first version of MathSAT [14] integrated a DPLL-based SAT solver
with a decision procedure for linear arithmetic logic. The newer version 5
of MathSAT [56] supports a rich set of theories such as equality and un-
interpreted functions (EUF), arrays (AR), linear arithmetic over rational
(LA(Q)), integer (LA(Z)), mixed rational-integer (LA(QZ)), fixed width
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bit-vectors (BV), and floating-point arithmetic (FP).

24.3 nuXmv

The nuXmv symbolic model checker [50] is the evolution of NuSMV, which
has been extended to support infinite states systems and adding the inte-
gration with modern verification techniques such as IC3/PDR [43]. The
nuXmv model checker supports also LTL model checking with the integra-
tion of k-liveness [60] and IC3.

The support for infinite states systems of nuXmv is available via the
integration with an SMT solver, which in this case is MathSAT5. The
SMV language has been also extended, in order to support infinite domains
variables such as Integers and Reals.

24.4 xSAP

The Formal Safety Analysis Platform (FSAP) [40] is a toolset that aim at
supporting design and safety engineers in the development of a complex
and safety critical system. FSAP relies on NuSMV as backend engine,
and extends it in order to provide BDD based algorithms for the minimal
cutsets computation [37]. FSAP provides also a fault injection based model
extension for SMV models.

xSAP [27] extends FSAP with a new set of algorithms and analyses.
The fault injection now supports the definition of more complex behaviors
like multiple failures and common cause. The model checking engines are
based on nuXmv, which provides the support for SAT-based algorithms
for finite and infinite states systems. In addition, xSAP provides fault
propagation analysis based on Timed Failure Propagation Graphs (TFPG),
and Common Cause Analysis (CCA).
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24.5 OCRA

OCRA [54] is a tool for the verification of logic-based contract refinement.
It implements the assume-guarantee paradigm, and it supports specifica-
tion and analysis of component-based system architectures. Each compo-
nent is defined with an interface of input and output ports, where their
expected behavior is expressed via discrete or hybrid linear-time temporal
logic. This approach allows for a compositional modeling and verification
by relying on the refinement structure of the system. nuXmv is used by
OCRA as a backend engine to deal with the temporal logic satisfiability
problem.

190



25

Tools Implementation

25.1 Minimal Cutsets Computation

The architecture of nuXmv is composed of several parts, called add-ons,
each of them devoted to solving a specific problem. An add-on extends the
core system functionality, and are specialized to provide a set of verification
techniques such as BMC, predicate abstraction, LTL model checking, and
so on. The implementation of the techniques described in this Thesis
required to extend some nuXmv add-ons, as well as the software interface
part using those new functionalities.

As described in Part II, the problem of minimal cutsets computation
is an instance of parametric model checking. Therefore, the integration
of this functionality required to extend the nuXmv add-on param, which
is the one devoted to solve the parameter synthesis problem. In fact,
the algorithms described in Part II come into play when the problem is
configured to solve an instance with a set of parameters that satisfy the
monotonicity assumption.

xSAP exposes the compute fault tree functionality as minimal cutsets
computation, and it translates this problem to a parameter synthesis call
for nuXmv. xSAP supports the definition of the system faults as input
or state variables, thus they have different semantics. In case of a state
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variable, its semantics expresses whether or not a fault has occurred in
the past (from the initial states). Differently, defining a fault as an input
variable requires xSAP to generate a fresh history state variable that im-
plements the behavior “once fault” (similar to the history variables for the
BDD case).

25.2 Contract-Based Safety Assessment

An OCRA system decomposition is defined with a hieararchy of compo-
nents, linked between each other through input and output ports. Each
component exposes a contract that expresses which behavior, on the out-
put ports, the component is going to guarantee if a set of assumptions, on
the input ports, are satisfied. Checking the validity of each contract refine-
ment is thus a paramount analysis for an OCRA system decomposition.
As described in Part III, the contract refinement checking is based on LTL
satisfiability that can be reduced to an LTL model checking problem de-
fined over a universal model i.e., a model that accepts all traces. Extending
this concepts to the contract-based safety assessment, it results that each
dependency analysis can be performed via minimal cutsets computation on
a universal model. The software component that exposes this functionality
to OCRA is part of xSAP, in fact it implements the core functionalities to
solve the minimal cutsets computation problem.

25.2.1 Fault Tree Analysis on leaf implementation

An OCRA system decomposition is defined as a hierarchy of components,
where the leaf ones can be refined with an SMV model implementation.
The techniques described in Part III allow for combining the Fault Tree
carried out on the hierarchical decomposition with the one resulting from
the analysis of the implementation.
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The integration between contract-based safety assessment and fault tree
analysis on the implementations needs to be compliant with the philoso-
phy of maintaining nominal and extended model disjoint. While for the
analysis at contract level this requirement is implicit in the technique, for
the FTA on the implementations, such integration requires reliance on au-
tomated model extension techniques. Due to this fact, the contract-based
safety assessment functionality in OCRA accepts, in addition to the system
decomposition, also a mapping file for the leaf components, and a fault ex-
tension information (FEI) file describing the fault injection pattern for each
implementation. The algorithm combines all information, and generates
a fault tree for each top level contract defined over basic implementation
faults, or leaf components contracts in case the SMV implementation is
not provided. The output formats of the contract-based safety assessment
cover all the ones supported by the main Fault Tree manipulation softwares
such as FT+, OpenFTA, XML, and CAFTA (Computer Aided Fault Tree
Analysis System). Moreover, the hierarchical fault tree is represented as
a formula in SMV format, which allows for automated analysis between
different FTs like inclusion, and equivalence checking.

25.3 Redundant Architecture Analysis

The techniques proposed in Part IV are tailored to analyze the reliability
of redundant architectures, defined as a set of components with input and
output ports. Due to this fact the tool implementing the reliability analysis
builds upon OCRA, exploiting its component-based architectural language.

This integration requires the OCRA system definition to be compliant
with some modeling constraints that allow the reliability analysis tech-
niques to be applied. More specifically, the tool-set is designed in order
to take as input an OCRA system definition, and a map file that links
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leaves components with redundant modules implementation. Given these
inputs, the tool will then generate a new OCRA file, with its relative map,
describing the miter construction. Once the miter has been constructed,
the process relies on existing OCRA and xSAP analysis verification tech-
niques, thus this approach does not require the user to get used to different
software interfaces.

As shown in Part IV, the architecture analysis can be performed with
two different techniques: concrete and modular abstraction. The imple-
mentation upon OCRA masks the details needed to apply the approach
based on predicate abstraction, and it only exposes a parameter that al-
lows the user to choose between the two techniques. The generation of
stages, and their caching is managed by OCRA. The abstraction phase re-
lies on nuXmv that in this case has been extended to support uninterpreted
functions. Such level of automation has been achieved via the definition
of an implementation library that contains both concrete and abstracted
modules. The library currently contains 78 different modules, and the
contraints for its extension are listed in the tool documentation.
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Comprehensive Safety Assessment
Process

26.1 Software Architecture

The techniques described in this Thesis extend the pre-existent tools, and
refine the formal analysis process. Figure 26.1 shows how each Part of
this Thesis contributed to extend each different formal analysis tool. Com-
paring this representation with the pre-existent one in Figure 24.1, now
OCRA has a dependency with xSAP for the contract-based safety analysis
technique, and the Reliability Analysis part relies on OCRA, xSAP, and
nuXmv.

26.2 Integrated Process

In this Thesis we extend the pre-existent contract-based refinement with
redundant architecture analysis and safety assessment. The direction of
how those techniques should be integrated follows the design process de-
fined in the ARP4754A [108].

The V model with safety assessment process prescribes the application
of the safety analysis as an extension to the validation and verification
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Reliability Analysis (Part IV)

OCRA (Part III)

xSAP (Part II)

nuXmv (Part II)

Figure 26.1: Software Architecture

phases. Thus, the integration of the techniques for redundant architecture
analysis and contract-based safety analysis have to be compliant with this
view.

The original process of the contract-based design implemented in
OCRA [58, 54] covers the preliminary architecture and modules design
phases of the development process. The former analyzes a system decom-
position enriched with contracts by checking the consistency of the system
refinement. The latter verifies that the leaf implementations (defined as
state machines) obey the pre-defined contracts. This formal process covers
part of the phases defined in ARP4754A. Figure 26.2 provides a schematic
representation of the resulting process that combines pre-existent contract-
based refinement with the techniques described in Part IV and III. The high
level process is divided in the following phases:

1. System Architecture Design and Optimization: it concerns the defi-
nition of the system architecture from high level design to modules
definition.

(a) Preliminary Architecture Design: this phase defines the high level
architecture, and extends it with system hazards definition on its
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Figure 26.2: Comprehensive Formal Development Process

safety assessment counterpart.

(b) Architecture Redundancy Refinement: it elaborates on the redun-
dancy aspects by refining the result of the previous phase.

(c) System Requirements Decomposition: in this step, the require-
ments obtained from the previous phases are decomposed at the
modules level.

2. Modules Design: it concerns the architectural modules design.

The techniques introduced in Part IV aim at extending the process by
providing the support during the definition of the system architecture. In
particular, those techniques allow the system engineer to revise the archi-
tecture while preserving its interface and behavior. The provided analyses
cover the validation and verification part (i.e., black border square in Fig-
ure 26.2), as well its safety analysis extension (i.e., red border square)
with fault tree and reliability analysis. The artifacts produced in those
phases are a summary of the property validation and verification (i.e.,
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counterexamples), fault trees (as Minimal Cutsets), and reliability func-
tions. Moreover, the redundant architecture analysis has been designed to
extend seamlessly the pre-existent tool chain, by supporting an OCRA sys-
tem decomposition as input. The library of components implementations
(black dashed arrow in Figure 26.2) represents a dependency of the tool,
and not a user defined input.

The contract-based safety analysis technique, described in Part III, is
designed to be a complementary analysis to OCRA check refinement and
check implementation. Thus, the contract-based safety analysis extends
these steps of the design by computing a set of hierarchically organized
fault trees out of a system decomposition enriched with contracts. At
the modules level, the analysis requires, in addition to the previous steps,
also a set of leaf components implementations with their fault injection
directives. The contract-based safety analysis extends the design at both
architectural and modules level with their counterparts on formal safety
analysis.
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Conclusion

In this Part we have described the pre-existing verification platforms and
how they were have been extended in order to implement a coherent tools
architecture. The resulting platform allowed for an extension of the pre-
vious verification process, while preserving the original methodology of
relying on a single model of the system. In fact, the techniques integrate
seamlessly with the pre-existing ones, while preserving the main philoso-
phy of the model-based safety assessment of relying all analyses on a single
formal model of the system.

The coherence in the extension of the formal verification process is a
very important aspect when the new techniques are intended to be applied
in practice. In fact, the usage of multiple, and possibly disjoint, formal
models is highly error prone due to the fact that they are required to be
kept properly aligned. Moreover, the user (e.g., the engineer) is not usually
an expert in formal methods, and he should concentrate on a limited set of
modeling formalisms. In Part VI we show how the methodology introduced
here can be applied to several real-world case studies.
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Part VI

Case Studies





Introduction

The aim of this Thesis is to develop a set of techniques able to aid the devel-
opment of safety critical systems. The achievement of this target requires
to go beyond a mere scalability evaluation, and analyze the proposed tech-
nology from multiple perspectives. In particular, our main concerns are in
the direction to guarantee i) conformability, if the extension is compliant
with the pre-existent process; ii) expressivity, whether our techniques are
able to describe real systems; iii) scalability, if current (mid range) compu-
tational power is able to provide a reasonable level of performance. In order
to validate the achievement of those targets, the techniques of minimal cut-
sets computation (Part II), contract-based safety analysis (Part III), and
redundant architectures analysis (Part IV) have been applied on a wide
set of real-world case studies coming from the collaboration with leading
edge partners such as the National Aeronautics and Space Administration
(NASA) and the Boeing company. In particular, the case studies discussed
in this Part are:

• The Triple Modular Generator (Chapter 28): provides a small but
detailed overview of the integration of the (monolithical) model-based
safety assessment into a standard formal V&V process;

• Automated Air Traffic Control Design Space Exploration (Chapter 29):
describes the results of the NASA project that applied formal valida-
tion, verification, and safety assessment process to analyze the 1600
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possible function allocation in the next generation of the air traffic
control system;

• Reliability Analysis on Fly-by-Wire Architectures (Chapter 30): pro-
vides an evaluation of Fly-by-Wire system architectures of Airbus
A330 and Boeing 777, by applying the techniques of redundant ar-
chitecture analysis;

• Formal Design and Safety Analysis of AIR6110 Wheel Brake System
(Chapter 31): applies the contract-based safety assessment to five
possible interpretations of the Wheel Braking System architecture.
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Triple Modular Generator

The system design process needs to cope with the increasing complexity
and size of systems, motivating the replacement of labor intensive man-
ual techniques with automated and semi-automated approaches. Recently,
formal methods techniques, like model checking, have become competitive
in the task of automated verification and validation.

In this Chapter, we show how to apply model checking techniques to a
significant industrial case-study: a high integrity power distribution system
such as required in aerospace, electrical power distribution, or the micro-
grid. These systems are composed of a redundant and reconfigurable plant
and a controller that must guarantee a high level of reliability. However,
the exponential number of possible configurations that have to be handled
by the controllers of these systems make it challenging to manually verify
and validate the correctness of the entire system. To address this problem,
we apply formal methods techniques to the validation and verification of a
triple redundant power distribution system. We model the plant, including
faults, formalize and validate the requirements, and expose an ambiguity
in the original natural language requirements. Moreover, by using the for-
malization of the requirements, we synthesize a correct by construction
property-based controller, without the need of enumerating all possible
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fault configuration (as currently done with manual approaches). The whole
process is supported by the xSAP toolset, which also includes automated
safety analysis such as Fault Tree generation.

28.1 Introduction

Providing continuous electrical power is a critical design requirement for
systems in many industries. In aerospace, electrical generators on aircraft
provide power to systems which must remain powered to ensure safe flight
and landing. Redundant designs for the plant (generators, buses, circuit
breakers) and controller must achieve reliability targets and ensure cor-
rect operation for all normal and non-normal configurations and failure
combinations. The evolution to a More Electric Airplane (MEA) [78], as
illustrated by the two most recent Boeing airplane models, the 777 in 1995
and the 787 in 2012, makes reliable electric power even more critical. This
has led to more complex architectures and control schemes, resulting in
significant increases in analysis complexity.

These analyses include 1) comparison of alternative redundancy
schemes, 2) verification of system requirements, 3) safety analysis such as
Fault Tree, Failure Modes and Effects Analysis (FMEA), common cause
analysis, and zonal analysis, and 4) assessment of the cumulative effects of
failures on systems, crew, and users. Similar, though less stringent, analy-
ses apply to spacecraft and other transportation systems (rail, automotive,
marine).

In the electrical power industry, distribution systems are the part of the
grid between the high-voltage transmission lines and the consumer. Often
distribution systems are connected to multiple power sources, and provide
redundant paths and architectures (e.g., secured feeder, double supply, ra-
dial, interconnected primary feeders) to improve reliability of power deliv-
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ery. The incorporation of distributed generation (DG) sources, distribution
automation, and “self-healing” grid are among the recent trends [71] driv-
ing the evolution of distribution systems towards more complex system
designs. To cite another example, microgrids [80] are emerging electrical
power industry systems architectures that combine local, independent con-
trol of power generation, low voltage distribution, more fine-grained load
management (load shedding), and the ability to operate connected or dis-
connected (islanding) from the main grid. All these emerging capabilities
require monitoring and controlling DG sources/loads, diagnosis and isola-
tion of defective portions of the grid, in order to provide very high levels
of availability. Similar consideration to those of the aircraft industry apply
to design, verification, operational control of these systems, and compar-
ison of redundancy schemes. In contrast to aerospace, requirements for
safety analysis are less stringent and fewer sensors mean that reconfigura-
tion must be done with incomplete information, altering requirements for
the controller.

In this Chapter we introduce an industrial case-study of a redundant
on-board power distribution system with reconfiguration policy. The ob-
jective is to verify and validate the requirements expressing the expected
behavior and provide a formal implementation of the controller that meets
such requirements. The case-study was chosen to be comparable in com-
plexity to the high voltage power systems of many previous generation
aircraft, although details of the architecture may vary. For such systems
the verification of power transfer can be performed manually by consider-
ing how to get to a legal configuration for all combinations of 0/1/2 failures
of the different components. This requires checking an exponential num-
ber of configurations against the reconfiguration requirements. Such an
analysis is possible using manual techniques, but would be time consum-
ing and error-prone. The interest of industry in applying formal methods
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(a) Plant (b) Controller-Plant interaction

Figure 28.1: Redundant Power Distribution System representation

for such a task is driven by the evolution of the electrical system for MEA
aircraft, which tend to have more generators and a more highly redundant
distribution system, making these manual analyses highly labor intensive.

The case-study is composed of a plant representation and a set of infor-
mal requirements that express the expected behavior of the overalll system
(plant, controller). The purpose of this work is to describe a comprehen-
sive formal methods approach that can be applied to the formalization of
the requirements (Section 28.3), the modeling of the system (Section 28.4),
and the validation of the requirements and verification of the system (Sec-
tion 28.5). The approach is supported by the xSAP toolset, which provides
a broad set of techniques covering all the steps of the formal assessment.

28.2 Informal Problem

Figures 28.1 shows a triple redundant power generation and distribution
system. The generators (G1, G2, and G3) provide variable frequency AC
power to one or more buses (B1/B2/B3), depending on the state of the cir-
cuit breakers (GB1/GB2/GB3 and BB1/BB2/BB3). The controller sends
commands to the generator (on/off), circuit breakers (open/close), and has
sensors that report on the state of the components (Figure 28.1b).
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The desired operation of the system is based on the physical properties
of electrical power systems, and the level of reliability required by the
application. In this example we assume that the required reliability can
be provided by a Triple Redundant configuration (a.k.a. Triple Modular
Generators) as shown in Figure 28.1a, with resiliency to all single and dual
generator/circuit breaker failures. The requirements are derived from the
physical properties of the system and the desired behavior of the overall
system, and they are listed an described, respectively, in Table 28.1 and
Table 28.2

The requirement PR1 (see Table 28.1) describes that the physical system
can not have fictitious current i.e. when generators are turned off all the
buses must be unpowered. PR2 and PR3 define the behavior in case of
short circuit: the former expresses the propagation of short circuit between
different buses, while the second one describes the lack of fictitious short
circuits. The buses break down if they receive power from more than one
generator at the same time (PR4).

The controller requirements expressed in Table 28.2 impose that no
bus may be connected to more than one power source at the same time
(Requirement CR1), considering that the AC generators may be different.
The controller behavior regarding the least number of powered buses are
covered in CR2 and CR3. A source to bus prioritization scheme deter-
mines the selection of power sources for each bus (Tables 28.3 and 28.4,
CR4). The system has to be resilient to any single or dual failure, and
this constraint is expressed by the requirement CR5. Moreover, only two
generators should be on, unless the third is required to compensate for a
failure (CR6). The requirement CR7 expresses the controller reaction in
case of bus short circuits.
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ID Description
PR1 If no power source is on, then all buses are unpowered.
PR2 Short circuits propagate between different buses if the buses are connected.
PR3 If no bus receives a short circuit, then no bus shall be in a short circuit

state.
PR4 If a bus is connected to two different power sources, it breaks down.

Table 28.1: Physical System Behavior

ID Description
CR1 No bus shall be connected to more than 1 power source at any time.
CR2 If any power source is on and there are no bus shorts,

then all buses will be powered.
CR3 If any power source is on and there is a bus short,

then at least one bus will be powered.
CR4 Bus power source priority and source-to-bus path priority schemes

will be respected at all time (see Tables 28.3 and 28.4).
CR5 Any single/dual component failure shall not cause other

system requirements to be violated.
CR6 Never more than two generators are on, unless required in case of failures.
CR7 Shorted buses shall be isolated from generators and other buses.

Table 28.2: Controller Requirements

28.2.1 System Faults

Each component represented in Figure 28.1a can fail to operate correctly,
and in this study we cover a representative set of failures:

• Generators can fail off, permanently. When this fault occurs the in-
ternal state of the generator is stuck at OFF permanently;

• Circuit breakers can fail open and closed, transiently. The internal
state of the circuit breaker is stuck at OPEN or CLOSED but the
fault is not permanent (i.e. it is transient), so that the component
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BUS High priority Medium priority Low priority
B1 G1 G2 G3
B2 G2 G1 G3
B3 G2 G1 G3

Table 28.3: Bus power source priority

Source to bus paths Priority B1 B2 B3

G1
High — BB1 BB3
Low — BB3-BB2 BB1-BB2

G2
High BB1 — BB2
Low BB2-BB3 — BB1-BB3

G3
High BB3 BB2 —
Low BB2-BB1 BB3-BB1 —

Table 28.4: Source to bus path priority

can go back to the nominal behavior;

• Buses can reach a short circuit state, transiently. This condition can
affect the other buses or generators if they remain connected together.
The typical response to a short circuit is to isolate (disconnect) the
part of the circuit experiencing the short.

28.3 Formalization of the Requirements

As described in Section 28.2, the requirements are split into two subsets:
one that defines the plant validation laws, and one that concerns the ver-
ification of the controller. Thus, an important step when dealing with
verification and validation is to provide a formal and unambiguous inter-
pretation of the requirements.
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1 INVARSPEC NAME
2 PR1 := ( (P . G1 . i s o f f & P . G2 . i s o f f & P . G3 . i s o f f ) −>
3 ( ! P . B1 . i s p o w e r e d & !P . B2 . i s p o w e r e d & !P . B3 . i s p o w e r e d ) ) ;
4
5 INVARSPEC NAME
6 PR2 := s h o r t c i r c u i t B 1 t o B 2 & s h o r t c i r c u i t B 1 t o B 3 &
7 s h o r t c i r c u i t B 2 t o B 1 & s h o r t c i r c u i t B 2 t o B 3 &
8 s h o r t c i r c u i t B 3 t o B 1 & s h o r t c i r c u i t B 3 t o B 2 ;
9

10 INVARSPEC NAME
11 PR3 := (P . count ko Bs = 0) −> (P . c o u n t s h o r t c i r c u i t = 0 ) ;
12
13 INVARSPEC NAME
14 PR4 :=
15 count (P . B1 poweredby G1 , P . B1 poweredby G2 , P . B1 poweredby G3 ) > 1 −> P . B1 . i s b r o k e n &
16 count (P . B2 poweredby G1 , P . B2 poweredby G2 , P . B2 poweredby G3 ) > 1 −> P . B2 . i s b r o k e n &
17 count (P . B3 poweredby G1 , P . B3 poweredby G2 , P . B3 poweredby G3 ) > 1 −> P . B3 . i s b r o k e n ;

Figure 28.2: Validation of Plant model (SMV language)

This section provides the formal interpretation of the requirements de-
scribed in natural language, with reference to the plant representation de-
fined in Figure 28.1. The formal requirements are expressed via invariant
properties that must hold for every state of the formal model.

28.3.1 Plant Validation

Table 28.1 defines a set of requirements for physical properties that the
formal model must satisfy.

Requirement PR1 represents a basic law: when all generators are turned
off no buses will be powered. This is a straightforward physical behavior,
however the modeling of a system with circular connections can easily
induce into unwanted behaviors. This requirement allows us to check the
absence of fictitious current. i.e. The bus B1 in Figure 28.1a is powered
if it receives power from any of its input, and propagates that energy to
its other ports. However, if B1 receives power from B2, B2 receives power
from B3, and B3 from B1, the system reaches the unrealistic condition
where all buses are powered without a generator being on.

Requirement PR2 expresses the fact that short-circuits propagate be-
tween two buses if they are connected with a circuit-breaker. The formal-
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28.3. FORMALIZATION OF THE REQUIREMENTS

ization of this requirement is divided into six parts (i.e. they are 3 + 3 due
to connection symmetry), one for each possible propagation pattern, as
described in Figure 28.2. Each sub specification “short circuit Bi to Bj”
is in the form “Bi.is short circuit∧BBj.is closed→ Bk.is short circuit”
and represents one direction.

Requirement PR3 is similar to the physical requirement PR1, however
it checks whether it is possible to obtain circular, and fictitious, short-
circuits. In Figure 28.2 the invariant PR3 expresses that if no bus is
in short-circuit operational mode (i.e. “count ko Bs”), then no bus can
be in a short-circuit state (i.e. “count short circuit”). The key aspect
when modeling this property is that “Bi.mode = ko” (only) implies that
“Bi.state = short circuit”, but not the other direction. In fact, the former
represents the condition when the bus is in a short-circuit failure, while the
second expresses that the bus is working correctly, but it is linked to a com-
ponent that is in a short-circuit state. This aspect allows us to distinguish
between these two scenarios and express the requirement PR4.

The specification PR4 expresses that if one bus is powered by more
than one generator, it breaks down. This is formalized in by using the set
of formulae “Bi poweredby Gj” that evaluate to True if at least one path
is active from Bi to Gj (see Table 28.4). If more than one generator is
connected to one bus, expressed by the formula “count(...) > 1”, then that
specific bus reaches the “broken” state i.e. “count(...) > 1→ Bi.is broken”.

28.3.2 Controller Verification

The invariant CR1, as in Figure 28.3, is based on the same set of formulae
“Bi is over powered” which are defined in terms of “Bi poweredby Gj” as
per in PR3, but in this case the CR1 formula is True only if the controller
is able to avoid to link more than one generator to one single bus.

The requirement CR2 expresses that the controller must guarantee the
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1 INVARSPEC NAME
2 CR1 := !P . B1 . i s o v e r p o w e r e d | !P . B2 . i s o v e r p o w e r e d | !P . B3 . i s o v e r p o w e r e d ;
3
4 INVARSPEC NAME
5 CR2 := (CR5 & (P . s h o r t c i r c u i t s = 0) ) −>
6 ( (P . G1 . i s o n | P . G2 . i s o n | P . G3 . i s o n ) −> powered buse s = 3 ) ;
7
8 INVARSPEC NAME
9 CR3 := CR5 −> ( (P . G1 . i s o n | P . G2 . i s o n | P . G3 . i s o n ) −> powered buse s > 0 ) ;

10
11 INVARSPEC NAME
12 CR4 := (CR5 & (P . powered buse s = P comp . powered buse s ) ) −>
13 ( ( P comp . s c o r e p a t h B 1 >= P . s c o r e p a t h B 1 ) &
14 ( P comp . s c o r e p a t h B 2 >= P . s c o r e p a t h B 2 ) &
15 ( P comp . s c o r e p a t h B 3 >= P . s c o r e p a t h B 3 ) ) ;
16
17 DEFINE
18 CR5 := (P . c o u n t f a u l t s <= 2 ) ;
19
20 INVARSPEC NAME
21 CR6 := (P . c o u n t f a u l t s = 0)−>
22 ( ( ( P . powered buse s = P comp . powered buse s ) & (P . Gs on = 3)) −>
23 ( P comp . Gs on >= P . Gs on ) ) ;
24
25 INVARSPEC NAME
26 CR7 := ( a v o i d e d s c B 1 t o B 2 & a v o i d e d s c B 1 t o B 3 & a v o i d e d s c B 2 t o B 1 &
27 a v o i d e d s c B 2 t o B 3 & a v o i d e d s c B 3 t o B 1 & a v o i d e d s c B 3 t o B 2 &
28 a v o i d e d s c B 1 t o G 1 & a v o i d e d s c B 2 t o G 2 & a v o i d e d s c B 3 t o G 3 ) ;

Figure 28.3: Formalization of Controller’s requirements (SMV language)

functionality of all buses only if there are no short-circuits. This require-
ment must be integrated with the precodintion CR5 (see the “DEFINE” in
Figure 28.3), which constrains the behavior only in case there are no more
than 2 faults. The invariant CR2 in Figure 28.3 represents the formal
interpretation of its informal counterpart.

The difference between CR2 and CR3 is the constraint on short-circuits:
the first imposes their absence, while the second admits them. The for-
malization of CR3 is quite simple, but in this case, if the requirement CR5
is obeyed, the controller has to guarantee that at least one bus is working
correctly.

CR4 defines an optimization requirement: it expresses that the source
to bus path priorities have to be respected at all times, which means that
the controller has to select the best possible configuration according to
Tables 28.3 and 28.4. The formalization of CR4, as in Figure 28.3, is
performed via an additional plant component called “P comp”. This ad-
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Figure 28.4: Plant configuration with double faults

ditional plant is used as a comparison for the controller operations, and
it is free to choose every possible commands considering that it receives
as input the same states and operational modes of “P”. This approach
allows us to check, via an invariant property, if there exists a command
configuration that is better than the one provided by the controller. The
formal representation of CR4 represents the optimality via the formulae
“score path Bi” that evaluate to an integer number such that the bigger
the value is, the lower is the priority. The premise of the CR4 implication
considers the case where the two plants have the same number of powered
buses, in addition to the integration with CR5.

The approach used in the formalization of CR6 relies again on the com-
parison parallel plant “P comp” since also this requirement expresses an
optimization constraint. In fact, the sentence “never more than two gen-
erators on” is checked by stating that if the controller chooses to turn
on 3 generators, as expressed by “P.Gs on = 3”, then it is not possible
to provide a different reaction that uses fewer generators; the invariant
“P comp.Gs on ≥ P.Gs on” expresses this constraint.

Requirement CR6 is essentially composed of two parts: the first one, rep-
resented by “never more than two generators on”, which is unambiguous,
while the second one represents a classic example of ambiguity in natural
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language, since the expression “unless required in case of failures” can have
more than one interpretation. The formal translation of CR6, represented
in Figure 28.3, considers the second sentence as “P.count faults = 0”,
which essentially means that there are no faults. However, this part could
also be interpreted as the invariant “P.count faults ≤ 2”, meaning that
there are less than three faults. The interesting implication of this last
interpretation is that CR6 requirement, combined with CR4, leads to a
contradiction. Figure 28.4 represents this case considering a configuration
when BB2 and BB3 are stuck at open, and according to requirement CR4
the controller selects the highest priority paths for both B1 and B2, while
for B3 the only possible choice is via GB3. Figure 28.4 shows that the
controller reaction is to turn on all generators, but the closing of BB1 and
opening of GB2 would allow using only two power sources. In other words,
this example shows that it is not possible to obey both CR4 and CR6 if,
in CR6 the sentence “unless required in case of failures” is interpreted as
“P.count faults ≤ 2”.

CR7 expresses the ability of the controller to avoid short-circuit propaga-
tion. In fact, if two buses are connected and one of them is in short-circuit,
then both will be operating in the same operational mode. Thus, the con-
troller has to avoid this behavior, by opening the suitable circuit breakers
whenever possible e.g. when they are not in stuck at closed. The constraint
CR7 is based on the set of formulae named with “avoided sc Bi to Bj”
that check if the controller avoids a short-circuit propagation from Bi to
Bj, under the condition where the circuit breaker between Bi and Bj is
not operating in a fault mode.
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(a) Instantaneous propagation (b) Interleaved propagation

Figure 28.5: Plant configurations

28.4 Formal Model

28.4.1 Plant Modeling and Model Extension

The plant and the controller are modeled independently and their com-
bination is then used for providing validation. In particular, as shown in
Figure 28.5, we provide two possible configurations for their combination:
Instantaneous and Interleaved.

In the instantaneous configuration, the controller (“Control” in Fig-
ure 28.5) can react much faster than the plant. Upon the occurrence of a
fault, the controller is able to deliberate on the commands to send to the
plant much faster than the effects of the fault can manifest. Therefore, the
plant never reaches an unsafe configuration. In a sense, we can imagine
that the controller is able to foresee the faults and prevent the system from
going to an unsafe configuration.

In the interleaved configuration, the controller can only react to the
plant being in an unsafe state. In this situation, we assume that the plant
is able to go to an unsafe state for a short time (one unit of time) and that
this will not violate any requirement due, for example, to some tolerance
of the components. The controller will then bring the system back into a
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safe state.
More in detail, the model of the system is divided in several components

(see Figure 28.5). All the components are memory-less, and the state of
the system is stored in the System State memory. The most interesting
components are the controller, and the two copies of the plant: Safe Plant
and Unsafe Plant. These two copies of the plant are identical except for
the inputs they receive. The unsafe plant takes as input the state of the
system, and a (possibly empty) set of faults from the environment (“Env”
in Figure 28.5), and provides as output a configuration of the system that
is (potentially) unsafe. Similarly, the safe plant takes as input the state of
the system and the commands from the controller, and provides as output
a (potentially) safe configuration of the plant.

In the instantaneous case, the output of the unsafe plant is fed directly
to the controller, that is able to react instantly and provide its outputs to
the safe plant. The position of the memory after the output of the safe
plant, ensure that (if a good controller is available) at each time step, the
system state (as stored in the memory element) is safe.

In the interleaved case, the outputs of both the safe and unsafe plants are
fed to a multiplexer. This multiplexer, which is driven by the system clock,
alternates the output between the two plants at every time step. In this
way, the controller takes the outputs of the unsafe plant and computes the
necessary commands for the safe plant for the next time step. Note that in
the interleaved configuration the traces are longer than in the instantaneous
configuration since commands and faults are interleaved (see Figure 28.6).
However, this style of modeling can be considered closer to reality, since
the controller reacts to observations on the system, instead of foreseeing
the behavior of the plant.

Note how the important building-blocks (Controller, Safe Plant, Unsafe
Plant) are reused in both configurations. This provides a way of studying
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Faults
Cmd
(a) Instantaneous Trace

Faults
Cmd

(b) Interleaved Trace

Figure 28.6: Comparison of traces

both configurations while avoiding doubling the modeling effort.
The properties that validate the controller take into account this aspect,

and the formal model has to explicitly express when a state is “safe” or
“not safe”, by distinguishing between time frames when the controller does
and does not have the capability to react. This condition defines that
there may be some time frames when the system is operating outside the
requirements while waiting for a controller reaction. In order to prevent
wrong results in the verification, we need to explicitly express that each
property holds only in a “safe state”.

28.4.2 Controller Development

The objective of the controller is to command the plant so that it avoids
unsafe conditions, and minimize the impact of component failures. In or-
der to reach this objective, the controller reads an input configuration (e.g.,
the current one), and provides a set of signals that can change the state
of the plant into one that is considered “safe”. The difference between
a safe, or acceptable, state and an unacceptable one is defined by the re-
quirements. The requirements in this case-study express a set of conditions
that are independent of the history of the signals that are received by the
controller, and due to this fact, such specifications allow for the definition
of a “memory-less” component. Therefore, we can define a controller by
analyzing each possible configuration that is intended to be managed, and
explicitly define the reaction to each undesirable condition. However, this
approach is error prone and time consuming, considering that the set of all
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possible configurations is in the order of 2.3 ∗ 104 (i.e. the controller has to
manage: 23 configurations for the generators, 36 for circuit breakers, and
23 for buses, and the overall result must be divided by 2 in order to re-
move symmetric configurations). The requirements defined in Section 28.2
provide a bound on the fault cardinality that must be considered by the
controller. This bound, as expressed by requirement CR5, is set to 2; based
on this, it is possible to define a controller with an explicit representation
of 165 configurations. In fact, if we call Fi the number of possible fault
modes for the component i, then number of all the possible configurations
with 2 faults is ∑n

i=1 F̄i + ∑n
i=1

∑n
j=i+1 F̄i ∗ F̄j.

Another possibility is to define a property-based controller, which avoids
explicitly defining the behavior for each possible configuration, and it is
based on a set of formal properties that define the behavior needed to
obey the requirements. Specifically, the challenge of this technique is to
define a set of symbolic formulae such that their conjunction represents the
acceptable states.

The property-based controller specifically defined below is composed of
the following sections: preservation of bus functionality, avoidance of short-
circuit propagation, prioritization of generator to bus paths, and minimiza-
tion of power usage.

Preserving Bus functionality Each bus can be linked to any generator,
and if one bus is connected to more than one generator, it becomes not
functional. The controller needs to avoid this condition, and the for-
mula that expresses this constraint is in the form “count(Bi poweredby G1,

Bi poweredby G2,

Bi poweredby G3) ≤ 1”, where Bi poweredby Gj becomes true when the
commands are sent to the plant, according with its operational modes, link
Bi to Gj by any of the possible paths.
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Avoidance of short-circuit propagation Similarly to the preserving of
bus functionality, this section is necessary to avoid the propagation of
short-circuits. The constraints are in the form “Bi is short circuit →
cmd Bi unlink”, which expresses the priority to unlink the bus Bi from
its neighbors, both the closest generator and adjacent buses, if it is in a
short-circuit operational mode.

Prioritization of generator-to-bus paths The requirements define an
explicit ordered set of the possible paths between buses and
generators. This constraint is expressed via three case con-
dition, one for each bus. Each condition is in the form
“can do Bi poweredby GJ {L,U,R} → cmd Bi poweredby Gj [L,U,R]”,
where “can do Bi poweredby GJ {L,U,R}” expresses the possibility to
enable the path between Bi and GJ through either the left port L

of Bi, the upper port U , or via R that is the right one. Similarly,
cmd Bi poweredby Gj {L,U,R} defines the commands needed to perform
the action that is expressed in the premise of the implication.

Minimization of power usage The minimization of power usage is one of the
targets that the controller has to reach. For this case-study no more than
two generators may be turned on, unless required in the case of failure(s).
The controller implements this constraint via the prioritization of generator
to bus paths constraints, in addition to a simple formula defining that,
when the circuit breaker GBi is open then a cmd off must be sent to the
generator Gi.
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28.5 Verification and Validation

The formal properties defined in Figure 28.2 and 28.3, defined as invariants,
can be checked using the nuXmv via pure BDD reachability analysis. The
time needed to perform this task is in the order of 2 seconds. The results
provided by the model checker were positive for all properties, both for
plant and controller requirements.

The requirements CR2 and CR3 defined in Section 28.3 express the
level of bus functionality that has to be guaranteed in case of single and
double faults. The verification of these requirements can be performed via
invariant checking, but Fault Tree Analysis (relying on xSAP) is able to
provide a more detailed description of the system behavior. Specifically, the
fault tree that represents the conditions where the buses are not powered
give us the motivation of why requirements CR2 and CR3 are satisfied.

Fault Tree Analysis for this model considers four different Top Level
Events: with 1 or 3 buses that are not powered (i.e., the TLE name that
ends with “ 1” or “ 3” in Table 28.5), and with or without short-circuits
(i.e., labelled with “ sc” or “ nsc”). The Minimal CutSets computed with
these Top Level Events meet the expectations. Table 28.5 summarizes the
results of the Fault Tree Analysis by providing the number of Minimal
CutSets ordered with respect to their cardinality, and such results can be
explained as follows:

• TLE sc 1: this TLE expresses the condition when at least one bus is
powered, under the condition that short-circuit operational mode can
affect the buses. Table 28.5 shows that the possible configurations are
3 of cardinality 1, that essentially represent each single short-circuit.
The configurations of cardinality 3 and 4 express the conditions where
multiple faults on generators and circuit breakers may force one or two
buses to be unpowered;
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• TLE nsc 1: this result is similar to TLE sc 1, but in this case there
are no configurations of cardinality 1. It is important to remark that
this result provides evidence that requirement CR2, combined with
CR5, is obeyed due to the fact that the sets of configurations with
cardinality 1 and 2 are empty;

• TLE sc 3: in this case, the Minimal Cutsets express which are the
configurations that lead to having all buses that are not working.
Table 28.5 reports that the possible Minimal CutSets are 54 of car-
dinality 3, corresponding to the configurations where: i) 1 bus is in
short-circuit and the neighboring switches are stuck at closed, ii) 1
bus is in short-circuit and 1 switch is stuck at closed, plus a generator
that is stuck at off. iii) 2 buses are in short-circuit and a generator is
stuck at off. Thus, the lack of configurations with cardinality 1 and 2
provides the evidence that requirement CR3, combined with CR5, is
obeyed;

• TLE nsc 3: if the TLE expresses the possibility of having all buses
that are upowered, but without the ability to reach a short-circuit
operational mode, the possible configurations are 8 of cardinality 3.
Specifically, such configurations represent the condition where all the
generators, combined with the circuit breakers GBi, are not working.

28.6 Conclusions and Future work

In this Chapter we introduced an industrial case-study that represents a
redundant on-board power supply with reconfiguration policy. The chal-
lenge was to verify and validate the requirements expressing the expected
behavior and provide an actual formal implementation of the controller to
meet such requirements.
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Cardinality
Number of Minimal CutSets

TLE sc 1 TLE nsc 1 TLE sc 3 TLE nsc 3
0 0 0 0 0
1 3 0 0 0
2 0 0 0 0
3 14 14 54 8
4 12 12 0 0
≥ 5 0 0 0 0

Table 28.5: Fault Tree Analysis Results

The high voltage power systems of many previous generation aircraft
are comparable in complexity to the plant shown in Figure 28.1. For such
systems the verification of power transfer, for the conditions described in
this study, can be done manually by considering how to get to a legal
configuration for all combinations of 0/1/2 failures of generator/circuit
breaker/bus, leading to up to 212 configurations to be verified. Although
possible, performing such an analysis manually would be time consuming
and error-prone.

Evolution to a MEA has several key impacts on the electrical power
system: generators must produce significantly more power, the system
must have a higher reliability, and the system must be certified to a higher
level of criticality. As a result the electrical system for MEA aircraft will
tend to have more generators and a more highly redundant distribution
system. The resulting configurations will typically have 2-3 times as many
components, leading to a significantly more complex analysis. Assuming
twice the number of components, the number of configurations that need
to be analyzed is about 224/2 (divided by 2 to account for symmetry), or
212 times as many configurations as described in this case study. Clearly
with a problem of this scale manual methods are no longer practical.
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In addition to the high voltage portion of the power distribution system
we have been discussing, aircraft also have low voltage distribution systems,
typically with 28VDC and 120VAC buses, external (ground) power sources,
a battery, and transformer/rectifiers that connect the high/low voltage
segments of the overall power system [89]. The low voltage portion typically
has at least as many components as the high voltage portion.

The analysis approach described in this study are targeted at the verifi-
cation problem of the complete interconnected power distribution system.
In addition to the benefits of verification, potentially there is a significant
advantage simplifying how a complex controller is implemented in early
phases of the design life-cycle. The verification and validation process de-
scribed in this Chapter is supported by nuXmv and xSAP tools, which
allowed us to perform model checking, as well as model-based safety as-
sessment analyses, using a single software workbench.

As a future direction of our work, we need to assess if the formal veri-
fication and property-based controller development approaches hold up at
the scale of MEA size interconnected power system, or if supplementary
techniques are necessary (partitioning/abstraction/etc). We would also
like the model and analysis tools to support other types of analysis that
are performed early in the life-cycle, e.g., architecture trade studies and
probabilistic analysis when varying the architectural displacement of each
single component.
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Automated Air Traffic Control
Design Space Exploration

In response to the need to increase the capacity of commercial air space,
NASA has been tasked with identifying and studying more automated solu-
tions for air traffic control. When multiple ideas and designs are available,
there is a need to map the design space in order to understand the big pic-
ture, and be able to understand the impact of design choices on the overall
functionality and safety of the system. In this context, we are faced with a
big design space, where a large number of different solutions are possible.

Reasoning on such complex and safety critical systems can clearly ben-
efit from the use of formal methods techniques [124, 76, 119]. The goal of
this work is to understand the trade-offs of placing separation assurance
functions on-ground versus on-board or in a mixed-mode that switches
between the two, in order to increase the capacity of the air space in a
provably safe way. In collaboration with NASA Ames and NASA Langley
experts, we define more than 1,600 instructive configurations. We ana-
lyze all of these configurations with formal tools and compare their merits.
This results in significant insights on the features of the various configura-
tions. We discuss how formal methods have been applied to support the
exploration of this practically relevant design space, as part of an internal
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Figure 29.1: Process Overview

project of NASA Ames.
The activity can be summarized in four main phases, depicted in Fig-

ure 29.1: Design Space Definition, System Modeling, Configuration Analy-
sis, and Data Analysis.

Design Space Definition. The stage was set by identifying precisely (yet
informally [84]) the situations of interest, and by defining the modeling di-
mensions to capture them. Interacting with the domain experts we defined
a structured design space that contained more than 1,600 configurations
worth analyzing.

System Modeling. Performing the modeling of each solution indepen-
dently would be too time-consuming (if not outright unfeasible). Plus each
model needs to be properly validated, to make sure that it enjoys the ex-
pected properties. Furthermore, independent modeling would require a lot
of maintenance effort to ensure all models remain aligned with each other
and with NASA’s most current designs, and to propagate changes and
modifications uniformly among them. In order to manage these sources
of complexity, we combined several ingredients. First, we used the archi-
tectural language of OCRA to separate the system architecture from the
implementation of the single components. This allowed us to model each
component in isolation, partitioning the effort, and minimizing the time re-
quired to validate changes in any component. Additionally, we can change
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the implementation of a single component without impacting the rest of
the system. Second, we used contracts to characterize each component.
This allowed us to properly specify the interaction between components,
and decompose the properties required for validation from each compo-
nent into properties for its sub-components. Third, we used parameters to
factor out multiple configurations into a single (although more complex)
model. If two configurations require only marginal changes to an imple-
mentation, we capture these changes using parameters within the models.
These techniques allowed us to automatically generate formal models for
all of the configurations in the design space, with great confidence in their
correctness and alignment. This phase was performed only once, without
the need of repeating it for each configuration.

Configuration Analysis. Each model was verified against the properties
of interest; in addition, techniques for safety assessment were applied to
identify which configurations of faults lead to the loss of fundamental prop-
erties. The corresponding fault trees were automatically computed, thus
providing additional information on the reliability of each configuration.
Each configuration was instantiated and analyzed independently, exploit-
ing the parallelism typical of modern HPC infrastructures, and significantly
speeding up the analysis.

Data Analysis. The results were combined into a symbolically repre-
sented dataset, linking each configuration to its satisfied properties and
fault trees. This dataset can be studied offline to automatically extract
sets of configurations enjoying specific properties (e.g., absence of single
points of failure). This dataset is particularly useful in such an explorative
phase, since it describes the whole design space and can be studied to
better understand it. Finally, we discussed a selection of interesting con-
figurations with the domain experts at NASA, and identified well-known
results [79, 74] as well as a novel one. In particular, we highlighted the
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need for additional assumptions when dealing with changes in delegation
of separation assurance from an aircraft to the ground (e.g., in case of a
request for backup).

The rest of the Chapter is structured according to the process described
above (Figure 29.1). Section 29.1 provides some necessary background.
Section 29.2 describes the modeling approach used in this work. Sec-
tions 29.3 to 29.7 describe each phase of the process in greater detail.
Notable results extracted from the analysis are discussed in Section 29.8.
Related works are discussed in Section 29.9, and Section 29.10 concludes
with possible directions for future work.

29.1 Background Notions on Automated Air Traffic
Control System

NASA is tasked with designing the next, more automated, air traffic control
system for the United States. A major safety goal is to minimize Loss of
Separation (LoS), resolve any such situations immediately, and never call
upon collision avoidance. LoS occurs when two or more aircraft become too
close to each other, i.e., they are below a defined safe distance of 1000 feet
vertical and 5 nautical mile horizontal separation. If LoS is not resolved
immediately, collision avoidance is necessary. The functional allocation
question asks how which separation assurance (SA) capabilities to require
and how to distribute the functions of the design in combination with a
subset of these capabilities on top of a set of agents, in order to minimize
the number of LoS and the use of collision avoidance techniques [84]. We
consider the following agents, functions, and capabilities:
Functions:

• Strategic Separation addresses short-term conflicts from 20 minutes
in the future down to 3 minutes out from a predicted LoS. Strategic
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separation is implemented in software and can be running on a central
computer on the ground, on-board individual aircraft, or some com-
bination thereof. It uses the trajectories of each known aircraft in the
airspace, detecting any conflicts, and outputting resolution maneuvers
for any aircraft involved in conflicts.

• Tactical Separation addresses near-term conflicts predicted to occur
less than 3 minutes in the future. It is also implemented in software
running on either a ground computer, an on-board computer, or a
combination thereof. Tactical separation must employ a different al-
gorithm from strategic separation because the conflicts it addresses
are more imminent and different details must be considered when
generating resolution maneuvers.

• Collision Avoidance addresses possible collisions less than 30 sec-
onds in the future. Its presence is required by Federal Aviation Admin-
istration (FAA) mandate, therefore, TCAS (and in the future ACAS-
X), software runs on-board every aircraft, detects possible collisions
using a transponder installed in the aircraft, and must operate totally
independently from on-ground systems. A system safety objective is
to never trigger collision avoidance.

Agents:

• Self-Separating Aircraft (SSEP) carry a separation assurance
software on-board.

• Ground-Separated Aircraft (GSEP) rely on SA software running
on a central on-ground computer transmitting to the aircraft.

• Air Traffic Control (ATC) Provides on-ground separation of
GSEPs and, when needed, of SSEPs.
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Capabilities:

• ADS-B Out (Automatic Dependent Surveillance-Broadcast Out) is
required on-board all aircraft by FAA mandate by 2020; it broad-
casts position information to ADS-B ground stations and other air-
craft within transmission range.

• ADS-B In is optional by FAA regulations; it receives ADS-B broad-
casts from ground stations and other aircraft.

Depending on who is in charge of what, and the available resources, we
can describe different designs. Different designs will have different charac-
teristics. Our goal is to provide some qualitative measure of the goodness
of each solution along different dimensions. For example, in a scenario in
which both GSEP and SSEP aircraft are involved, we might want to know
whether a solution in which SSEPs perform both tactical and strategic sep-
aration on-board is “better” than a solution in which tactical separation is
handled on-ground.

29.2 Formal Modeling for Comparative Analysis

An important aspect is then to define the right level of abstraction in order
to guarantee that all the relevant aspects are taken into account. In the
following sections, we detail what variables define the state of the system,
how time passes, and how this influences the change in the state. Note that
our analysis focuses on the protocol level and thus, in absence of faults, we
assume each component implementation to be correct.

29.2.1 Trajectory Intentions and Conflict Areas

The basic information that is relevant for our analysis is the trajectories
that aircraft intend to follow, and more specifically if their intention is
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Figure 29.2: Conflict Areas abstraction

in conflict with other aircraft. The actual detail of the trajectories (i.e.,
the 3D position as a function of time) is not part of our model. In fact,
we reason about the system at the architectural level, focusing on the
interaction between the components rather than on their precise behavior.
We are not interested in which specific trajectory an aircraft should follow
to avoid a collision, but only in whether their intentions are in conflict or
not. Therefore, we abstract away the detailed trajectory information by
introducing Conflict Areas (CA). Intuitively, two aircraft are in the same
CA, if their trajectories intersect in a given interval of time. In this way, we
can abstract the problem of separation into the simpler problem of checking
that two aircraft are not in the same conflict area. Figure 29.2 shows an
example when two aircraft have to reach two separate destinations. In this
example we consider Tj1 and Tj2 for AC1, and Tj3, Tj4, Tj5 for AC2.
Figure 29.2 shows that AC1 and AC2 are in the same CA if their intended
trajectories are respectively Tj1 and Tj5, or Tj2 and Tj3. In all other cases,
they are into different CAs, representing the absence of conflicts. CAs are
used throughout our models anytime we talk about aircraft intentions and
resolutions sent by controllers.
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29.2.2 Time windows

Most scenarios in [84] divide the responsibility of the separation-assurance
agents based on time windows. In particular, we consider four time win-
dows: Current, Near, Mid and Far. They represent symbolically consecu-
tive time intervals. Therefore, the trajectory intention of the aircraft define
which aircraft are in the same CA in each time window, as defined in the
previous section.

The Current window represents the immediate intention of the aircraft,
i.e. within 30 seconds. This window is managed by Conflict Avoidance
algorithms, e.g., TCAS, and is therefore the key to the definition of LoS:
two aircraft are currently in LoS if they share the same conflict area in the
Current window. The tasks of tactical and strategic separation are then
mapped into the Near- and Mid-window (Tactical) and the Far-window
(Strategic). If two aircraft share the same conflict area in the same window,
we say that we have a predicted LoS.

In our model, the intention of aircraft is represented by assigning each
airplane with a CA for each window. Figure 29.3 shows an example with
two aircraft. In this example, the aircraft are in different CAs apart from
the Far window. So, we have a predicted LoS in that time window.

Intuitively, the windows shift with the passage of time: the old Near
information will became the new Current information (Figure 29.3), while
the intention for the other time windows change according to the interac-
tion among the agents. Therefore, if we manage to resolve all predicted
LoS, e.g., in the Mid window, we will not have LoS. In order for conflicts
to be detected and resolved, we need to take into account the communi-
cation between aircraft and the ATC and when it occurs. In the model,
passing of time is divided into two main phases that alternate constantly:
communication and maneuvering.
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Figure 29.3: Near, Mid, Far windows, and their shifting

During the maneuvering phase, windows are shifted (Figure 29.3). Dur-
ing the communication phase, the different agents are able to exchange
intentions and resolutions. For example, the aircraft is able to provide its
intention to the ATC, and receive a suggestion for a new trajectory. We
introduce a bound on the number of communications during this phase, in
order to better understand whether multiple iterations between agents can
improve the reliability of the system. This interleaving model may seem
unintuitive. However, this choice is justified by reality since we can only
apply a maneuver after deciding it, and it simplifies the modeling.

29.3 Design Space Definition

Our work started by considering several proposals from NASA’s AFT
Branch for different solutions for the Function Allocation for Separation
Assurance [84]. These ideas were the result of considering several features
and characteristics in a preliminary phase. Our first step was to identify
and formalize the dimensions shared by different proposals, in order to de-
fine the design space. We derived six modeling dimensions that enable us
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to capture different trade-offs:

1. SSEP Separation Agent

2. Aircraft Mix

3. Information Sharing

4. Burdening Rules

5. Communication Steps

6. ACDR Implementations

SSEP Separation Agent. A key difference between the solutions is who is
in charge of performing separation for the SSEPs. We split this task into
separation for the Tactical (Near and Mid) and Strategic (Far) windows.
For each of these windows we define who is in charge of separating the
SSEPs: the ground (ATC ), the aircraft (SELF), or the aircraft with possi-
ble delegation to ground (SATC ). If ground is in charge of separating the
SSEP, the resolutions are computed by ground, and sent to the aircraft to
apply them. If the aircraft is in charge of its own separation, computation
of a resolution strategy happens on-board, possibly involving coordination
between aircraft. The third case (SATC ) captures the possibility for an
SSEP to delegate its own separation to the ground. This is used to cap-
ture different situations such as backup in case of a fault, privileged traffic
corridors, and transfer of responsibility in designated airspace regions. In
the future, we expect other cases to be studied. For example, resolutions
might be computed on-board but require approval from ground.

Aircraft Mix. We consider situations in which all aircraft are of the same
type, and situations in which we have a mix of aircraft types. The same
design can be analyzed without SSEPs, with the same number of GSEPs
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and SSEPs, without GSEPs, or any option in-between. Each combination
is indicated by the number of GSEPs and SSEPs, i.e., 〈#GSEP,#SSEP 〉.

Information Sharing. We want to minimize required communication, be-
cause it adds time and complexity. Therefore, we need to understand what
is the minimum amount of intent that aircraft need to share. We make
two main distinctions: information sharing from GSEPs to SSEPs and
from SSEPs to ATC. For each of these two information sharing pipelines,
we consider scenarios from sharing no information (None) to sharing in-
formation concerning just the Current window, up to Near window, up to
Mid window, or all the windows (Far).

Burdening Rules We might want to specify who has priority in a conflict
between a GSEP and an SSEP. For example, we might say that SSEPs
always have the right of way, and therefore the burden of maneuvering
is on the GSEPs. Burdening rules define who should move when such
a conflict occurs: 1) Undefined, 2) GSEP, 3) SSEP. If the burden is on
the GSEP, then the conflict should be resolved by changing the trajectory
of the GSEP. If the burdening rules are undefined, then each agent will
arbitrarily choose a burdened strategy, and consistently apply it to every
conflict.

Communication Steps. Due to delays in communication and availability of
the networks, multiple rounds of communication might be needed during
the Current time window in order to achieve an agreement among the
agents. Instead of having only one communication round, we model for
the maximum number of rounds that could realistically transpire, given
minimum hardware latencies.
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Name
Possible Considered

Values Size Values Size
SSEP TS SA ATC, SELF, SATC 3 ATC, SELF, SATC 3
SSEP SS SA ATC, SELF, SATC 3 ATC, SELF, SATC 3
Aircraft Mix 〈4, 0〉, 〈3, 1〉, 〈2, 2〉, 〈1, 3〉, 〈0, 4〉 5 〈4, 0〉, 〈3, 1〉, 〈2, 2〉, 〈1, 3〉, 〈0, 4〉 5
GSEPs to SSEPs Info None, Current, Near, Mid, Far 5 Current, Far 2
SSEPs to ATC Info None, Current, Near, Mid, Far 5 Far 1
Burdening Rules Undef, GSEP, SSEP 3 Undef, GSEP, SSEP 3
Com Steps 1, 2, 2 1, 2, 2
ACDR Implementations Simple, Asymmetric, Non-Receptive 3 Simple, Asymmetric, Non-Receptive 3

TOTAL 20,250 1,620

Table 29.1: Summary of possible and considered design dimensions

ACDR Implementations Each component of the system can be imple-
mented in multiple ways. In this project, we considered different implemen-
tations only for the Airborne Conflict Detection and Resolution (ACDR)
component. The simplest implementation of the ACDR computes a res-
olution without considering the behavior of the other aircraft (“ACDR
Simple”). A more complex implementation, instead, will take into ac-
count how the other SSEPs are going to resolve the conflict, and use this
knowledge to compute a resolution that is guaranteed to solve the current
conflict (“ACDR Asymmetric”). Finally, the last implementation (called
“ACDR Non-Receptive”) is the one in which we declaratively enforce the
assumption that conflicts will be resolved without specifying how, thus con-
straining the environment with a non-receptive specification [1]; this last
option is useful to study the system behavior assuming a perfect ACDR.

Table 29.1 shows the possible dimensions defined during the first analy-
sis, and yields a design space with more than 20,000 configurations. After
some discussion, NASA domain experts proposed to exclude some con-
figurations that were not interesting from the domain point of view. In
particular, they suggested to fix the information sharing of the SSEPs, in
order to provide all information (i.e., Far) and consider only the two ex-
treme cases for the information shared by the GSEPs: Current and Far.
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The reduced design space (right part of Table 29.1) obtained after apply-
ing these simplifications, yields a set of 1,620 configurations. These are the
configurations taken into account in this work.

29.4 System Modeling

ADS-B Net

AC 2AC 1 AC 3 AC 4

Communication Layer

ATC

Figure 29.4: Model Architecture

The dimensions described in Table 29.1 are captured by defining a
unified structure including all possible configurations. This structure is
equipped with parameters and multiple implementations of the compo-
nents, making it possible to model the whole system once, and then au-
tomatically generate any of the 1,620 possible instances. This reduces the
modeling effort that is, in terms of resources, the most expensive part of
the process. However, we need to pay particular attention to the validation
of the model, to make sure that all expected behaviors are captured once
parameters have been instantiated.

The general structure of the model is shown in Figure 29.4, and in-
cludes four aircraft, the ATC, and two different types of networks: ADS-
B and Communication Layer. ADS-B is used only among the aircraft,
while the Communication Layer is used between the aircraft and the ATC.
This choice makes it simple to provide different characteristics to the two
networks: faults, symmetry, amount of information, delays, etc. We al-
ways consider up to four aircraft instances. This is sufficient to capture
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System

Aircraft(s) ATC ADS-B Network
Communication

Layer
Airborne CDR
(ACDR)

ADS-B In

Pilot

Ground CDR
(GCDR)
Operator

Route Manager

Protocol Policy

Figure 29.5: Hierarchical decomposition

all combinations of conflicts between aircraft of different types: GSEP-to-
SSEP, GSEP-to-GSEP, SSEP-to-SSEP. This abstraction only represents
how many aircraft can be in a single conflict at the same time, and does
not assume anything on the size of the airspace.

Figure 29.5 shows the decomposition of the system into a hierarchy of
component types. This provides an architecture that can be refined. For
example, we break down the definition of the Aircraft and ATC components
into sub-components. By breaking down the behavior of each component
into its sub-parts, we are able to simplify modeling and validation.

We use the Aircraft component (the most complex component) to ex-
emplify our parametric modeling approach. There are two types of air-
craft: SSEP and GSEP. Since these two types differ only in few ways,
they are modeled as a generic aircraft component with some additional
parameters. The parameters capture some of the dimensions described in
Table 29.1. An additional parameter is used to enable/disable the ADS-B
receiver (ADS-B In), which is a feature restricted to SSEPs.

We model the Aircraft component as having the following parameters:
adsb_in, ts_agent, ss_agent, and burdening. The parameters ts_agent
and ss_agent are used to specify who is in charge of the Tactical Separation
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Figure 29.6: Aircraft Component

(TS) and Strategic Separation (SS). Similarly, the parameters burdening
and adsb_in capture, respectively, the information about the burden-
ing rule in use and the availability of the ADS-B receiver. Using this
parametric model, we can describe a GSEP as an aircraft that is always
separated by ground, and that does not have an ADS-B In component:
Aircraft(adsb_in=No, ts_agent=ATC, ss_agent=ATC, burdening=GSEP).

In each single configuration, we enforce that all GSEPs must have the
same parameters; SSEPs are similarly restricted. Therefore, in the same
configuration there cannot be two SSEPs with, e.g., two different separa-
tion assurance agents. This is not a limitation of the model or tool, but
a design choice motivated by the domain that we are exploring and our
choice to keep the model more understandable and limit the scope to real-
istic scenarios. The impact of the parameters in the component hierarchy
is shown in Figure 29.6. Having components whose implementations are
independent of the parameters makes it possible to re-use the components
for multiple configurations. In Figure 29.6, we can see that the aircraft
provides its real intention directly as output. The sharing of this informa-
tion with other aircraft and the ATC is handled in the ADS-B Network and
in the Communication Layer. By using dedicated components, it becomes
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Type Name Domain

Parameter

id [1..4]
adsb in Boolean
ts sa agent {ATC, SELF, SATC}
ss sa agent {ATC, SELF, SATC}
burdening {Undefined, GSEP, SSEP}

Input

suggestion {near,mid,far} ground Conflict Area [0..4]
communication phase Boolean
ac {1,2,3,4} intention {current,near,mid,far} Conflict Area [0..4]
ac {1,2,3,4} {ts,sa} agent {ATC, SELF, SATC}

Output
intention {current,near,mid,far} Conflict Area [0..4]
predicted conflict {near,mid,far} Boolean
request {ts,ss} sa ground Boolean

Figure 29.7: Parameters, Inputs and Outputs of the Aircraft model

easier to localize faults and experiment with different levels of information
sharing, while keeping the output of the aircraft as ground truth. Fig-
ure 29.7 provides a summary of the input and output information, and of
the parameters.

We capture the architecture described in Figures 29.4 and 29.5 using
the OCRA language. OCRA also provides a means to write contracts in
Linear Temporal Logic that describe the expected behavior of each com-
ponent of the system. These are used to perform a first validation of the
component implementation. To draw a parallel with software engineering,
the contracts that we write are comparable to unit tests in which we focus
on the correctness of the component in isolation.

Breaking components (e.g., Aircraft) into simpler components simpli-
fies both modeling and validation. In particular, we can write properties
about the aircraft and then decompose them into properties of the sub-
components. We do so by using contracts. For example, we write a con-
tract for the aircraft (Figure 29.8) and decompose it into contracts on its
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subcomponents.

1 CONTRACT A C m a i n t a i n i n t e n t i o n t s s e l f
2−− I f s e l f −s e p a r a t i n g , d u r i n g communicat ion phase i f no c o n f l i c t i s
3−− p r e d i c t e d , the i n t e n t i o n w i l l not change . T a c t i c a l S e p a r a t i o n Case .
4 assume : TRUE ;
5 guarantee : a lways ( ( communicat ion phase and t s s a a g e n t = SA SELF ) i m p l i e s (
6 ( not p r e d i c t e d c o n f l i c t n e a r i m p l i e s next ( i n t e n t i o n n e a r ) = i n t e n t i o n n e a r )
7 and
8 ( not p r e d i c t e d c o n f l i c t m i d i m p l i e s next ( i n t e n t i o n m i d ) = i n t e n t i o n m i d ) ) ) ;
9

10
11 CONTRACT A C m a i n t a i n i n t e n t i o n t s s e l f
12 REFINEDBY cd r . AC D R n o c on f l i c t m ea n s m a i n ta i n n e a r ,
13 cd r . ACDR no con f l i c t means ma in ta in mid ,
14 p i l o t . P i l o t a p p l y t s s e l f ,
15 p i l o t . P i l o t i n t e n t i o n i s n o t n o p ;

Figure 29.8: Example of a contract on the Aircraft component

To take advantage of contract-based design we need to perform two
steps [59]. First, we need to check that the refinement of the contract is
correct. This means that the guarantees provided by the subcomponents in
the refinement are sufficient to prove the guarantee of the supercomponent.
After performing this step, we know that independently of the choice of
parameters, if the implementations of the ACDR and Pilot satisfy their
contracts, then also the Aircraft satisfies its contract. As a second step, we
verify that the implementations of each component satisfy their contracts.
This operation is done locally on the component in isolation and, since
most components are relatively small, it can be performed efficiently. Every
time we modify a basic component, we only need to validate it against its
contracts, and we are guaranteed that the composite components will still
satisfy their contracts. This significantly speeds up the design loop.

An added benefit of this process of contract decomposition is the need
to better understand the relation between the components. This raises
interesting questions about how to define the components, how to divide
responsibilities, and what behavior can be expected by every component
in nominal situations. In fact, we are forced to define requirements that all
components implementations must satisfy. In our case, this investigation
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was supported by a close collaboration with the AFT group at NASA,
and resulted, for example, in the definition of multiple possible ACDR
implementations, and the definition of more than 130 contracts.

29.5 Configuration Analysis

Once the unified model is completed, we proceed to analyze each possible
configuration in isolation. For each configuration we break the analysis
into the following steps:

1. Instance Generation

2. Airspace, Nominal, and Extended Validation

3. Nominal and Extended Verification

4. Fault Tree and Reliability Analysis

Automation of this phase is very important. Each step is run automatically,
from the definition of the instance to the generation of all verification
and fault-tree artifacts. This ensures that the process is reproducible and
scalable.

Instance Generation We associate each leaf component in our hierarchical
architecture with an implementation (a behavioral model defined using an
SMV file) by defining a map file. The OCRA tool uses this mapping to
generate a monolithic implementation (SMV) of the instance. This makes
it extremely easy to instantiate the system with multiple functional im-
plementations of the components, and also to create instances with and
without faults. We pass parameters through the OCRA architecture using
pre-processing instructions to define constants. In this way, the variability
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of the model is limited to the OCRA architecture and map files used dur-
ing the generation phase. The outcomes of this phase are three models:
airspace, nominal, and extended. These are standard SMV files, without
parameters, that can be analyzed by any out-of-the-box technique.

Airspace, Nominal, and Extended Validation The models for the configu-
ration are generated automatically. Before proceeding to the verification
step, we need to gain confidence in the quality of the generated model. For
this reason, we perform these additional steps of validation.

The scenarios that are taken into account in this work represent the
interaction between a controller (the Air Traffic Control and the CD&R
on-board), and a controlled system (the set of aircraft). In order to avoid
a vacuous verification we first need to validate separately controllers and
system. In particular, the system must allow the occurrence and resolution
of LoS, and the controllers should should accept any possible trajectory
intent from every aircraft. We generated these models by mapping the
separation agents, or the aircraft, to implementations that have no con-
straints, while using nominal implementations for the other components.
To certify that the components work correctly together, we verify 18 CTL
properties encoding the possibility of bad and good behaviors, and 24 LTL
properties derived from contracts.

The nominal model uses a nominal implementation for every compo-
nent, including separation agents. Unlike the extended model, in this case
we do not allow components to fail. We validate this model with 29 LTL
properties derived from the contracts of the components.

Finally, the extended model uses an implementation for every compo-
nent that includes faults, resulting into a total of 95. The validation of the
extended model checks that all faults are possible (through 137 CTL pos-
sibility properties), and that they respect their dynamics, i.e., permanent
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or transient, with 29 LTL properties.
Overall, the validation of the 3 models requires a combination of different

techniques in order to be effective and be carried out in a limited time. The
CTL verification requires a fixpoint-based approach, using BDDs, while
for the LTL properties, we use the IC3-based algorithms implemented in
nuXmv. Every property is checked against a known result, such as the
negation of some existential LTL property, that, if violated, causes the
analysis to stop for further investigation.

Nominal and Extended Verification In this step, we characterize different
configurations by verifying additional properties. The most important is
whether LoS can always be avoided (NO-LOS), followed by stronger ver-
sions: NO-LOS-Near, -Mid, -Far. Other properties provide additional in-
formation on the quality of the configuration, e.g., “Every conflict in the
Near-window (Mid-, Far- respectively) is detected by at least one Agent.”
(Detect-Near, -Mid, -Far). This provides a simple way of ranking configu-
rations for further investigation. During extended verification, instead, we
check whether these properties are still satisfied in the presence of faults.
For most properties this will not be the case. However, if some property is
satisfied even with faults, it means that the property and the faults have
no relation in the given configuration. In this step, we verify 24 LTL and
30 invariant properties on both the nominal and extended models.

Fault Tree and Reliability Analysis We compute the Fault Tree associated
with each safety property in order to understand the resilience of each
configuration to faults. We compute them automatically from the formal
model, using the IC3-based technique for minimal cutsets computation de-
scribed in Part II. For each Fault Tree, we also generate a reliability func-
tion as described in Section 20.3, which relates the probability of violating
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the property to the probability of failure of each basic fault.

29.6 Data Analysis

Each configuration can be analyzed independently. We exploit this fact
and run the analysis on a cluster with 12 Intel Xeon X5650 processors
(72 cores). The average size of the models was 10107 states, and each
model was checked against 346 properties. The two most difficult steps
were those of model validation, due to the need for BDD-based reasoning,
and minimal cutset computation, since it requires solving a parameter
synthesis problem. These two steps were completed within an hour for most
configurations, but for roughly 10% of the models, they required several
hours to complete. Verification of the LTL properties was performed using
the nuXmv IC3 implementation, requiring roughly 5 minutes per model.

Once all results are available, we can perform the last step of the process:
Data Analysis. Each configuration provides us with a set of verification re-
sults and a set of fault-trees. These artifacts can be collected into relations.
The first, V ⊆ C ×Bn, relates each configuration to the satisfaction of the
verification properties. The second, FT ⊆ C × N × 2MCS instead relates
each configuration and property to the set of minimal cutsets associated
with it. This data can be queried and manipulated offline, by the domain
experts, in order to obtain more insights on the design space.

29.6.1 Summary of Results

Most of the configurations (Figure 29.9) satisfy the key property of avoiding
Loss of Separation (NO-LOS). The fact that NO-LOS-Far is satisfied by
some SSEP-Only configurations is due to the non-receptive implementation
of the ACDR, which assumes that trajectories are computed in a way that
avoids potential conflicts in the Far window.
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GSEP-Only Mixed Mixed Mixed SSEP-Only Total
4-0 3-1 2-2 1-3 0-4

NO-LOS 324 244 212 213 258 1251
NO-LOS-Near 324 244 209 210 252 1239
NO-LOS-Mid 324 192 138 141 198 993
NO-LOS-Far 0 0 0 18 84 102

Figure 29.9: Models satisfying NO-LOS for different windows

Prime Implicants To extract interesting facts from the verification results,
we synthesize the region of parameters that satisfy a property of interest.
This result has beed carried out by fixing the property value and quantify
away the other properties in the relation V . E.g., for NO-LOS:

NO LOS(C) = ∃P1, · · · , Pn. V (C,P1, · · · , Pn) ∧NO LOS

where Pi is a Boolean variable associated with the verification result for
property i, and C is the set of configuration variables. In this way, we can
compute the region of parameters associated with the satisfaction of each
property. Very few of these regions have a compact representation. To ex-
tract interesting facts from these regions, we compute the prime implicants
of the region, i.e., the set of minimal elements that are sufficient to enforce
the satisfaction of the property. For cardinality 1, we obtain the following
implicant for NO-LOS:

(MIX = 〈4, 0〉) ∨ (SSEP TS SA = ATC) ∨ (SSEP SS SA = ATC)

This tells us that there are two ways to guarantee NO-LOS: having only
GSEP airplanes, or having the ATC in control of the Strategic or Tactical
separation of any SSEP.

We also verified the claim from above, by checking that NO-LOS-Far is
achieved only by configurations using non-receptive ACDR. Moreover, we
verified that not all configurations using non-receptive ACDR can satisfy
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Figure 29.10: Impact of the communication faults on LOS probability.

NO-LOS-Far, thus discovering a necessary but not sufficient condition.
These analyses were performed using pySMT [70] in order to represent the
data using BDDs [47] for efficient querying.

Reliability Functions Analyzing the reliability functions, we can synthesize
the region of configurations that have a probability of violating a property
lower than a given threshold. This result provides us different sets of pos-
sible candidates that are able to guarantee a high reliability. In addition to
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Figure 29.11: Configurations impacted by the top N Single Point of Failure.

that, we want also to analyze the impact of a variation in the probability of
failure of different groups of components. In Figure 29.10, we demonstrate
this last analysis by plotting how many configurations have a probability
of leading to a LOS that is below the threshold of 10−4, when changing the
probability of the faults of the Communication Network (y axis) and of the
ADS-B Network (x axis). A different analysis is presented in Figure 29.11
in which we analyze how many configurations share the same top N sin-
gle points of failure (minimal cutsets of cardinality one). We can see that
there are roughly 10 single points of failure that are shared by more than
a thousand configurations. However, we also notice that most faults are
single points of failure for a limited number of configurations; recall that
there are 95 faults in total.

29.7 Detailed Comparison

The analysis shown in the previous section are tailored to extract common
patterns and characteristics in different function allocations. The outcome
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of that analysis may ask for a more detailed evaluation of a limited subset
of the possible architectures. In this case, the comparison elaborates on
the details of the minimal cutsets and reliability functions.

29.7.1 Minimal Cutsets Comparison

A common practice in Fault Tree Analysis consists of comparing the size
of cutsets of the same cardinality. This approach is based on the intuition
that the fewer the single point of failures in the system the higher is the
overall reliability. This approach can be extended also to the cutsets of
higher cardinality e.g., double failures. This approach provides an intuitive
understanding of the relation between different fault trees, however, it is
not always precise, since a single failure might be less probable than a
double failure.

An example of this analysis is presented in Table 29.2, which compares
the results of the FTA with LoS as TLE, by varying i) the number of
GSEPs (G) and SSEPs (S), with SATC on strategic separation and ATC
on tactical; and ii) the ability to share far intention from the GSEPs (E for
Enabled, and D for Disabled) . In this example the number of single point
of failures does not vary for every configurations (i.e., 5), while the number
of double failures decreases when the GSEPs share their far intentions
with SSEPs aircraft. Important fact, however, is that the number of triple
failures increases when GSEP-far is enabled. This behavior in the fault tree
analysis results is typical when adding redundant components. In fact the
idea behind redundancy is to increase the fault tolerance, and essentially
what is a single point of failure becomes a double (or higher) failure.

Further analysis on fault trees can be performed by evaluating the min-
imal cutsets that are not in common. An example of this analysis can
be done by considering the configuration 2G-2S, and comparing the fault
trees obtained with the TLE “there is a LoS between SSEP1 and GSEP1”,
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Card.
3G-1S 2G-2S 1G-3S

E D E D E D
1 5 5 5 5 5 5
2 12 15 12 16 12 15
3 33 24 35 23 36 27

. . . . . . . . . . . .

Table 29.2: MCS, LoS as TLE, and GSEP-far (E/D)

when varying GSEP-far.
The results of this evaluation shows that if GSEP-far is disabled then the

fault configuration FC = {G1.F comm ATC tot, S1.F comm ATC tot}
can cause the occurrence of the TLE. Differently, when GSEP-far is
enabled, FC is no more a necessary condition to reach the TLE be-
cause the ACDR on the SSEP is able to react to that situation. In
fact, if GSEP-far is enabled then FC requires to be combined respec-
tively with {ATC.F far res},{ATC.F future res}, {G1.F comm adsb},
and {S1.cdr.F future resolve, S1.cdr.F resolve detection} to cause the
occurrence of the TLE. Thus, the enabling of GSEP-far turned a minimal
cutset of cardinality 2 into 3 cutsets of cardinality 3 and 1 of cardinality 4.

29.7.2 Reliability Function Evaluation

We formally analyze the set of possible AAC designs early in the system
design phase, before specific module implementations or probabilities of
failures are fully defined. However, we can evaluate how the reliability
functions compare to each other by analyzing different possible probability
values. For instance, if we take into account the probability of reaching
a LoS between two aircraft of the same type (for instance GSEP1/2 and
SSEP1/2 in the scenario 2G-2S), then we expect that the failure of the
ATC will affect more the GSEPs than the SSEPs. This can be assumed
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Figure 29.12: Reliability comparison between different aircraft types

considering that SSEPs aircraft rely on ATC for strategic separation only as
a backup, while they are self-separating otherwise. However, the ACDR on-
board of the SSEPs highly depends on the ADS-B system and its possible
failure. Fig. 29.12 shows the result when varying the probability of failure
of the ATC (x-axes) and the ADS-B (red lines), by keeping fixed all the
other values. According to the results, there exists a probability of ADS-
B failure such that the pure ATC-based separation assurance between two
GSEPs (blue line) is more reliable than the one implemented by the SSEPs
aircraft.

We need to remark that the aim of this evaluation is to provide the
functions that relate probability of TLE occurrence to the probability of
failures of each component, and not the actual values of failure probability.
In fact, the outcome of the reliability evaluation is a set of functions in
Matlab format that can be analyzed using common analytical numerical
tools. Thus, the remarkable aspect of such type of artifacts is that they do
not need to be recomputed when the real component implementation will
be defined.
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29.8 Interesting Executions

A selection of the most relevant results was discussed with the domain
experts. In particular, we were able to independently reproduce two known
issues, side-walk [120, 79] and coincidental conflicts [74], and discover a new
one.

Side-walk Conflict. Side-walk conflicts occur whenever we use the “sim-
ple” implementation of the ACDR, in which conflicts between SSEPs are
resolved by choosing a free conflict area. The problem occurs when more
than one SSEP decides to move to the same conflict area. Due to the
symmetry of the resolution algorithm, this strategy is not guaranteed to
resolve the conflict. To break this symmetry, we developed the asymmetric
version of the ACDR.

Coincidental Conflict The asymmetric ACDR is not able to resolve con-
flicts early. In particular, we would like to always satisfy NO-LOS-Mid, i.e.,
avoid predicted LOS in the Mid window. This is not possible if we allow
only one communication step. In fact, if four aircraft are in two different
conflicts that are resolved correctly, they might still end up in a new con-
flict. Consider the two conflict sets: {AC1, AC2} and {AC3, AC4}. AC1
and AC3 decide to move to solve their conflict. However, they chose to
move to the same conflict area. An additional round of communication is
needed in order to resolve this conflict.

Backup From Ground. The novel problematic configuration that we
identified stems from limited requirements on the behavior of the backup
operation, i.e., when an SSEP is able to request backup from ground and
it delegates its separation to the ATC (SATC). This turned out to require
more assumptions than were initially considered. In fact, when enabling
this behavior, all configurations violate NO-LOS, excluding the ones with
non-receptive ACDR. This is motivated (as shown by the counterexamples)
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by a lack of information and a mismatch of expectations in the airspace. In
particular, in the design used in this project, whenever an aircraft requests
ATC assistance, the other aircraft are not aware of it. Therefore, all of
the other SSEPs expect the aircraft to maintain its behavior as an SSEP.
In order to solve this issue, we propose two options. First, requests for
ground-assistance are relayed to other aircraft. Second, the algorithm for
separation used by ATC needs to take into account that the aircraft was
an SSEP, and therefore compute a resolution taking into account what the
other SSEPs expect the aircraft to do. These extensions are left as future
work.

29.9 Related Work

Before NASA turned to the question of what designs are best for automated
air traffic control, it was necessary to explore what designs are possible.
To that end, NASA launched several initiatives to formally reason about a
single such system; two of these works, using symbolic model checking [124]
and probabilistic model checking [125] techniques led to the decision to use
the former for the problem of broader design space exploration.

In this work, we firstly designed and verified a monolithic model of
the now-more-detailed design, then we generalize the analysis to deal with
more than 1,600 configurations, and present a tailored process that allows
us to model, validate, verify, and compare such a huge design space.

The term design space exploration is commonly used to describe the
study of a design space (mostly combinatorial) by avoiding the computa-
tion of all solutions and optimizing with respect to some cost function. For
example, Airbus [17] also uses automated techniques to evaluate design
spaces. In particular, multiple solutions are compared and sorted with re-
spect to their weight. It is important to notice, however, that we are dealing
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with a sequential problem while works such as [17] deal with combinational
ones. Moreover, the existence of a cost function allows the optimization
engine to prune “bad” configurations, thus reducing the actual number of
configurations that will be eventually checked. In our case, there is no
cost function defined; we are instead interested in a better understanding
of the design space, and thus want to be able to thoroughly analyze every
possible design. Therefore, we analyze all of the realistic configurations
and collect the data in a form suitable for subsequent comparison.

When we move from combinational to sequential problems, we find
works related to product lines, e.g., Software Product Lines [61], that deal
with a similar problem of verification of a parametric system. In [61] the
authors propose an extension to NuSMV that is able to perform symbolic
model checking of an extended version of CTL (feature-oriented CTL). The
differences with our work are several. From a process point of view, we fo-
cus not only on the verification but also on the validation of the generated
models and on safety assessment; the outcome of our process is more in-
formative since it relates the set of configurations with the properties that
are satisfied (i.e., parameter synthesis). Finally, we integrate the modeling
phase with a compositional approach that helps to save significant mod-
eling effort. In principle, we could try to combine multiple configurations
in order to analyze them together in a symbolic way. However, for our
case-study this was not needed. On the contrary, the ability to work on
each configuration independently made it possible to exploit high levels of
parallelism provided by modern HPC infrastructures.

29.10 Conclusions and Future Work

In this Chapter, we presented a case study on the application of formal
methods to the analysis of the big design space associated with the Next-
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Generation Automated Air Traffic Control System under study at NASA.
We combined existing techniques and tools to perform model genera-

tion, validation, verification, and safety assessment. We achieved this by
using a compositional, parametric, and contract-based approach in order
to maximise reuse, and to ensure great confidence in the models by means
of aggressive model validation. To the best of our knowledge, this is the
first time that a design space of this scale has been mapped out by con-
sidering every possible solution in such depth. Our approach resulted in a
wealth of interesting data that supported the re-discovery of known facts,
and also the detection of new insights. We provided some intuition on
how to extract meaningful information from this data, but we expect that
even more will be extracted in the future, working in collaboration with
the NASA domain experts. This introduces interesting challenges for data
analysis that could be explored in the future.

In the future, we also plan to extend the model by identifying additional
modeling dimensions of interest, e.g., the fact that ADS-B information
might not propagate equally to all aircraft, or the presence of multiple
ATCs. We also plan to leverage more the contract-based infrastructure
defined in this work, in order to identify properties that can be proved by
pure compositional reasoning.
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30

Reliability Analysis on Fly-by-Wire
Architectures

Stability and control of an aircraft is subject to the ability of changing
the angle of rotation in the three dimensional space. The Flight control
surfaces allow the pilot to control those aspects and changing aircraft flight
attitude, hence by operating on roll, yaw, and pitch angles. Pilot’s controls
(yoke, sticks, rudder pedals, etc.) drive the flight control surfaces, and in a
mechanical or hydro-mechanical system such interaction relies on pulleys,
cranks, tension cables and hydraulic pipes. This approach compares to the
more advance Fly-by-Wire (FBW), which translates the pilot’s commands
into electric signals, transmits them by wires (hence the fly-by-wire term)
to flight computers that determine how to move the actuators at each
control surface to provide the ordered response. Both mechanical and FBW
systems have advantages and disadvantages, however current direction in
civil aircraft demands for the more reliable, lightweight, and autonomous
electrical system.

Guarantee reliability, safety, and availability is most assuredly a crucial
part when developing flight control systems, and loosing aircraft maneu-
verability should be a very unlikely event. Recent techniques, such as the
one presented in Part IV, allow us to analyze architecture and different
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approaches to FBW systems. This analysis can be done in the early stage
of the design phase, thus we are able to analyze the potential capabil-
ity of the different approaches, without taking into account the concrete
implementations of each single block.

The advantages that a Fly-by-Wire approach offers over the traditional
mechanical flight control systems are dramatically important in modern
civil aircraft. The FBW system replaces heavy mechanical control systems
with lightweight electrical wires. First of all, this guarantees a lower fuel
consumption, in addition to a simplified system maintenance. Moreover, a
FBW approach turns out to be highly compact, and the gained space can
be used to increase the passenger capacity.

In a pure hydraulic system, the pilot has full control of the aircraft,
and any maneuver of the flight control surfaces is subjected to a pilot
command. However, in a FBW configuration the pilot provides the inputs
to the flight computers, which drive the flight surfaces to serve the request.
A significant difference of those two approaches can be understand with
a simple example. Consider an aircraft that is flying at a constant speed
with pitch and roll angles equals to 0. In this case, when the pilot is not
providing any command to the system, the mechanical flight control will
interpret it as “no changes to flight surfaces”, while the FBW will just
preserve the flight attitude.

Relying on a FBW system allows engineers to design an aircraft with
relaxed stability i.e. the tendency to change flight attitude, and control it
via automated electrical systems. This allows for an optimization of flight
efficiency by reducing drag (air resistance), and increasing maneuverability.
This results into a tight dependency between FBW system and mechanical
development of the aircraft.

The first civil installation of an electrical based flight control was the one
designed by the Aerospatiale to cover the needs of the Concorde in 1969,
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and was based on analogical computation. The Airbus A310 program in
1983 introduced the first version of a digital electric Fly-by-Wire system.
Lather advances of the Airbus A340 improved the previous technologies,
and in 1992 it defined the base for the modern FBW systems, where all
flight control surfaces are controlled by digital electronics. The Boeing
company integrated a FBW approach with the 777 family in 1994.

Airbus and Boeing commercial airplanes differ in their approaches and
principles in using fly-by-wire systems, considering both physical imple-
mentation an philosophy. Airbus aircraft do not permit pilots to oper-
ate over some predefined limits of maneuverability. With the Boeing 777
model, the pilots always have the possibility to override the flight com-
puter, and may operate the aircraft beyond its usual range of maneuvers
under standard situations. Modern aircraft no longer have a mechanical
backup, thus the reliability of FBW systems is crucial to guarantee safety.

In this Chapter we present the two systems and analyze the their reli-
ability aspects. More specifically, Section 30.1 describes the Fly-by-Wire
principles and main characteristics. The FBW system of Boeing 777 and
Airbus A340 are analyzed respectively in sections 30.3 and 30.4. To con-
clude, section 30.6 provides the future directions of this work.

The system modeling of the case studies presented in Sections 30.3 and
30.4 come purely from the inspection of publicly available documentations,
thus they may differ from the real implementations. The purpose of these
case studies are purely directed to show how the techniques in Part IV can
be applied on a real-world redundant architecture.
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30.1 Fly-by-Wire Principles

The term Fly-by-Wire describes a control system that relies on electrical
signals, rather than mechanical ones, to translate pilot’s command into
flight surfaces movement. The basic approach to a FBW system consists
in substituting the conventional mechanical pilot’s controls with electrical
input devices. Those devices translate their position into an electrical
signal, which is sent to the actuator electronics that impose an angular
displacement of the control surfaces. Those angles are proportional to the
input, without any form of enhancement. Possible forces that bind actuator
movements are provided as feedback to pilot’s input devices. This simple
approach is the one introduced in the 1970s with the Concorde program.
Later designs take advantage of the Fly-by-Wire potential by integrating
stability augmentations, and flight envelope limiting1 [67]. In this case, the
position of control surfaces is no longer a direct representation of pilot’s
command, as well as actuator movements feedbacks, which are not directly
provided to input devices.

The high-level operations of a Fly-by-Wire system can be represented
with the block diagram shown in Figure 30.1. The Pilot operates on cock-
pits controls, and provides the Objective to the system as electrical signals.
Those signals are provided to the FBW system (assume that Objective
and Revised Objective are equal in the first iteration), which computes the
Command for the Control actuators system. The Computed Order is then
provided by the Control Actuator to the Control Surfaces, which actually
impose an Aircraft Maneuver. A set of Sensors read the actual state of the
Aircraft, and those signals are then sent back to the FBW system. The
Aircraft commands are revised by the Command Computation according
with the difference between Command and Actual State of the Aircraft.

1Automated protection against exceeding predefined flight parameters like speed and yaw, roll, and
pitch angles is called flight envelope protection.
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Figure 30.1: Standard Fly-by-Wire loop

The FBW architectures that we analyze in this Chapter consider Com-
mand Computation and Control Laws components, while System State is
incorporated in the inputs of the FBW, thus they are not explicitly con-
sidered.

30.2 Formal Analysis Process

In this Chapter we apply the techniques for architecture reliability analysis
described in Part IV, on two different Fly-by-Wire architectures. The
formal process that we applied is tailored to analyze redundant and safety
critical systems. This Section provides an overview of such methodology.

Redundant and Safety Critical System As described earlier in this Chapter,
modern aircraft no longer have mechanical backups for aircraft piloting.
Due to this fact, a malfunction of the Fly-by-Wire system during flight
operations is not an option. However, any electrical or mechanical part
has a possibility, even extremely remote, to fail. In fact, a redundant and
safety critical system like a Fly-by-Wire has to be designed in order to be
functional and available even in presence of multiple components failure.
This characteristic opens up to a variety of operational modes, that range
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from Normal, where no failures are detected, to different levels of Degraded
configurations. If the system is in a Degraded mode operational level,
then the overall system behavior should be preserved even though not all
components are active and functional. In fact, systems like the redundant
Fly-by-Wire are designed in order to detect failing components and disable
them. In fact, a subset of the degraded modes is usually able to guarantee
the minimum level of safety requirements.

Modeling Techniques The modeling approach that we applied on the
Fly-by-Wire systems relies on the OCRA/xSAP tool-set, as described in
Part V. This approach requires modeling the system architectural descrip-
tion, and integrating it with a mapping that links each leaf component
to an implementation coming from a library of SMV files. Each imple-
mentation file is modeled with SMV language, and describes a common
component implementation such as triple modular redundancy, computa-
tional module, median value selection, communication bus, and so on. The
possibility of relying on a library-based implementation allows the mod-
eler to dramatically reduce the modeling time, while still having enough
expressivity to describe a real-world redundant architecture.

Faults Definition and Categorization In order to evaluate the reliability of a
redundant system, the formal modeling also has to consider failure events.
In this evaluation we analyzed the impact of two types of faults: visible
and hidden. A computational component, with input and output ports,
that is experiencing a visible fault will set the outputs to a specific value
(for example 0.0) that express that the signal is invalid. The occurrence of
a hidden failure enables the possibility to provide a wrong output, but not
distinguishable from the correct one. In other words, the first case gives
an additional information on the validity of the output signal, condition
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that does not hold for the latter.
The information regarding the validity of the signal can be used by non

failing components to exclude invalid values from the computation. An
example of this approach is applied to the voter mechanism, where the
invalid signals are simply not considered. In fact, this adaptation of the
implementation is able to mask 2 visible or 1 hidden failure. In practice,
parity checks, cyclic redundancy checks (CRC), and hash codes are some
of the possible techniques that can be applied to recognize hidden failures,
and thus modify them into visible ones.

Given the probability of occurrence in one hour of operation, for each
fault event, the Fault Tree Analysis allows us to estimate the probability
of the Top Level Event. In the following case studies we set the occurrence
probability of a visible failure to 10−7, while for hidden failures the value
is set to 10−10. Those values represent an “extremely improbable” and
an “extremely remote” event, whose categorization is standardized by the
authorities Europe and the United States [9, 41]. Table 30.1 describes the
complete probability events classification, in addition to the color conven-
tion that we apply on the rest of this Chapter.

Abstract Model Analysis Model validation is a fundamental part in model
based formal analysis. In addition to standard property verification, in this
work we analyzed also an abstract representation of the concrete system,
by relying on predicate abstraction techniques. In particular, the nuXmv
model checker exposes this functionality that consists in generating an
abstract symbolic state machine given a set of (Boolean) predicates. From
that representation it is possible to obtain its explicit version, where each
state represents a complete reachable assignment to the predicates. The
outcome of this analysis is visually represented, and thus compared with
the expected result.
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Probability 1 10−5 10−7 10−9 0
Color Red Orange Yellow Green Blue

Classification
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ely

Im
probable

Extrem
ely
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(N
o

single
points

offailure)

Table 30.1: Probability Events Classification [9]

Fault Tree Analysis The evaluation of the systems under analysis considers
two main sets of properties. The first set checks, for each operational mode,
under which conditions the output of the system is not correct. Those
requirements are formalized in the form init mode → correct output, for
any possible normal or degraded modes.

The second set of properties is intended to verify how the system changes
the operational mode. This set of property is formalized as init mode →
¬final mode, where init and final mode range over all possible modes.

30.3 Boeing 777 Primary Flight Computer

30.3.1 System Description

The Fly-by-Wire system of the Boeing 777 extends the standard triple
modular redundancy approach, by implementing a triple-triple redun-
dancy [122, 96, 81, 110, 114]. The Primary Flight Computer of the Boeing
777 is composed of 9 identical Lanes, where each of them has full flight
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Figure 30.2: Boeing 777 FBW Architecture [122]

control capability of translating pilot’s objective into actuators command.
The lanes, as shown in the architectural description in Figure 30.2, are
grouped by 3 into Left, Center, or Right Channel. Each channel commu-
nicates with the others via a triple Bus, namely Left, Center, and Right
Bus. The Bus Interface Logic is an artificial component, not present in the
original design, that implements the bus communication protocol.

The redundancy aspects of the PFC allow the system to be fully func-
tional, even if some of the lanes are not behaving correctly. This capability
requires to recognize whether a lane cannot be considered trustworthy in
the command computation, so it needs to be disabled. This function is
implemented in the Boeing 777 PFC where one lane for each channel com-
putes the actual commands, and the remaining two lanes that monitor the
correctness of the computed command. This requires each lane to be able
to operate in two different modes: Command and Monitor.
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Power System

The PFC requires electrical power to work properly, and this results in a
tight dependency between those systems. Thus, the power system also has
to be designed to be fault tolerant and reliable.

The main source of power in a modern aircraft is provided by the en-
gines, and the Permanent Magnet Generators (PMG) components trans-
form kinetic energy into electrical power. The Boeing 777 relies on a two
PMGs per engine, with a total of four PMGs (i.e., it is a twin engine
aircraft). A single PMG is sufficient for the energy provisioning of the
entire aircraft, however a double engine failure would disable all electri-
cal generators. As described earlier in this Chapter, modern aircraft have
no mechanical backup and the loss of electrical power would result in a
catastrophic condition. In order to mitigate those event, the power system
relies on multiple batteries that provision the aircraft when no generators
are available. The definition of the interconnections between generators
and batteries is one of the challenges when defining a power system. Fig-
ure 30.3 shows the power system architecture implemented in the Boeing
777, which is composed of 4 PMGs, 3 batteries, and 3 powered buses. The
power system is split into 3 disjoint sub-systems that provide electrical
power respectively to left, center, and right PFC channels. The each bat-
tery has its own charger that acquires the power from the PMGs, however
this aspect is not considered in this work but we modeled the batteries as
alternative sources of electricity.

Channels Behavior in Normal Mode

The command computation of the Boeing 777 PFC is characterized by the
sequential computation of four different signals:

1. Proposed Command Output (PCO): each lane first proposes an actu-
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Figure 30.3: Boeing 777 Power System [114]

ators command;

2. Select Command Output (SCO): the command that is selected after
reading all PCOs;

3. Cross Lane Enable (XLE): a signal that judges the sanity of the com-
puted command. This is a lane to lane signal, local to a channel;

4. Cross Channel Inhibit (XCI): similar to the XLE, evaluates the sanity
of the computed command. This is a channel to channel signal.

Figure 30.4 shows in detail the functional parts composing a Channel,
when it is operating in Normal mode i.e., when no failures are detected. In
this situation, the lanes are called Command, Standby, and Monitor lane,
where the first one is operating in Command mode and the other two in
Monitor mode.

Command Lane The ISM CLAWS component is the one representing the
computational part, in fact it translates the pilot’s objective into actua-

269



30. RELIABILITY ANALYSIS ON FLY-BY-WIRE ARCHITECTURES

Figure 30.4: Boeing 777 Left Channel (Normal Mode)

tors command. The value computed by the ISM CLAWS at this stage
it is called Proposed Command Output (PCO) and each channel writes it
on its reference bus i.e., left, center, or right for respectively left, center,
and right channel. Successively, the Channel Output Selector (COS) per-
forms a median value selection (MVS) over the local PCO and the two
PCOs computed by the other two channels. The result is called Selected
Command Output (SCO), and it represents the final computed command.
The next part of the computation is devoted to evaluate the behavior of
the other channels, and send them a Cross-Channel Inhibit (XCI) when a
wrong behavior is detected. In particular, this operation is performed by
the Selected Output Monitor (SOM) component, which analyzes all PCOs
and the SCOs coming from the other two channels. At last, if the AND of
the XCIs coming from the other channels is False and the OR of the XLEs
is True, then the SCO is written on the bus by the XMT component.

Standby and Monitor Lanes As shown in Figure 30.4, the operations in
Normal mode of Standby and Monitor lanes are identical, and are directed
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Figure 30.5: Boeing 777 Left Channel

to compute the Cross-Lane Enable (XLE) signal. More specifically, the
ISM CLAWS components operates as in the Command lane, and provides
a local PCO signal that is compared, by the Monitor component, with the
Command lane PCO of the same Channel. The output of the Monitor is a
Boolean value that is combined, in an AND logic gate, with the output of
the Selected Output Monitor (SOM). This component reads the SCO from
the Left Bus of the Command lane, and evaluates possible discrepancy by
comparing it with Left, Center, and Right Channels PCOs.

Lanes Reconfiguration

Figure 30.4 shows the lanes behavior under nominal condition i.e., when
all components are enabled. However, XCIs and XLEs signals are intended
to detect lane malfunctioning, and exclude them from the command com-
putation. As depicted in Figure 30.4, the command lanes are the ones that
receive those disabling signals, thus are the only ones that can be disabled.
In normal condition the role assigned is Command-Standby-Monitor, that
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Figure 30.6: Boeing 777 Lane (of the Left Channel)

can change to Disabled-Command-Monitor when the first lane get disabled.
Those partial availability conditions are called Degraded. The minimum
number of active lanes in a channel is two, which means that additional
lane failures will result in disabling the entire channel. The set of all possi-
ble degraded modes is listed in Table 30.2. More specifically, the situation
when all 9 lanes are operational is called Normal, while Degraded identifies
a mode where at least one lane is disabled. Each Degraded mode can be
identified with the remaining Full (F) or Partial (P) operational Channels.
A Channel is considered Partially available when 1 lane is not operational,
and not available when 2 or more lanes are disabled. Table 30.2 lists all
possible modes, by showing: i) mode name, ii) number of enabled lanes,
iii) number of enabled channels, and iv) number of enabled lanes for each
channel as an array of configuration in a canonical form (the values order
is not relevant i.e., 332 represents also 323 and 233).

As described early in this Section, all lanes of the Boeing 777 PFC are
identical, though they should have both Command and Monitor capabili-
ties. A possible conceptual representation (of the left channel) that enabled
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Mode Lanes Channels Configuration
Normal 9/9 3/3 333
Degraded-2F1P 8/9 3/3 332
Degraded-1F2P 7/9 3/3 322
Degraded-3P 6/9 3/3 222
Degraded-2F 6/9 2/3 330
Degraded-1F1P 5/9 2/3 320
Degraded-2P 4/9 2/3 220
Degraded-1F 3/9 1/3 300
Degraded-1P 2/9 1/3 200
Dead 0/9 0/3 000

Table 30.2: Boeing 777 FBW modes

for lane reconfiguration is shown in Figure 30.5. In this representation, the
output PCO, SCO, and XCI, previously written on the bus, are provided
to the Bus Interface Logic. This component is the one that routes those
signals on the buses, according to the current lane roles. With this repre-
sentation, the XLE signals are simply fully connected between the lanes.

Internally, each lane has to integrate both command and monitor modes,
in addition to having a “write-only” interface to the bus, as described in
Figure 30.5. The implementation of a lane that obeys those requirements
is depicted in Figure 30.6. In this representation, the ISM CLAWS compo-
nent is shared between the two operational modes, and an additional mode
controller has been devoted to disable the entire lane when requested.

30.3.2 System Faults Definition

As listed in Table 30.3, the resulting formal model of the Boeing 777 PFC
has a total of 228 possible faults, where each of them is assigned to a
probability of occurrence. In case of a visible failure, the probability is set

273



30. RELIABILITY ANALYSIS ON FLY-BY-WIRE ARCHITECTURES

Component
# Failures

Visible Hidden
Power System 15 0
Computational Modules 15 9
Common Cause Implementation 0 3
Channels 81 81
Buses 12 12
Total 123 105

Table 30.3: Components Failures

to 10−7 for one hour of operation, while for hidden failures the value is set
to 10−10.

The design of the Boeing 777 PFC aims to overcome also common im-
plementation failures. In fact, if the 9 computational modules i.e., ISMs
and CLAWSs, were sharing the same implementation, then a software or
hardware bug would cause a loss of the entire system. The designers of the
PFC approached this by relying on 3 different copies of compiler/processor,
and distributing them to the channels with a rotation pattern i.e., ABC
for Left, BCA for Center, and CAB for Right. Considering the software
nature of these common cause events, their probability of failures cannot
be quantified, thus it is set to 0.0. Even though the software implementa-
tion events are not taking part in the probability computation, they will
be still considered and analyzed in the minimal cutsets computation.

30.3.3 Formal Modeling and Model Validation

The architecture description of the Boeing 777 PFC is modeled by relying
on the techniques described in Chapter 20, thus the system is combinato-
rial. More specifically, in absence of faults the outputs of the PFC are a
function of the inputs, and not dependent on the previous inputs or com-
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puted values. In fact, under this assumption the whole PFC is equivalent
to a single “ISM CLAWS” module. The extension with failures adds a non
deterministic behavior to the system, however the PFC’s outputs remain
dependent only on current inputs and state variables. A combinatorial sys-
tem gives the possibility to rely on simpler, and usually faster, verification
algorithms due to the fact that the system diameter is known upfront.

The Boeing 777 system modeling required a total amount of 20 man-
hours2. The resulting OCRA model is composed of 653 lines of code,
that turned out to generate a miter construction in SMV language of 826
lines. The state machine generated has 763 state variables (277 real and
486 Boolean) where 228 of those are fault variables, and 9 uninterpreted
functions.

The model validation of this system aims at analyzing the possible be-
haviors of the system, and to check that the reachable states are only the
expected ones. For instance, in this phase we check that all modes listed in
Table 30.2 are reachable, and that it is not possible to reach other system
configurations. In addition to system level properties, we also formally ver-
ified that each leaf component implementation behaves as expected. This
set of properties, not specific for the Boeing 777 PFC, integrate the SMV
implementation library. This analysis resulted in the definition of a set of
626 invariant properties.

30.3.4 Abstract Model Analysis

The Abstract Model Analysis is a technique that allows the designer to
inspect the behavior of the model. Applying the Abstract Model Analysis
on a combinatorial system would result in a collection of initial states, thus
providing a poor level of information. In order to overcome this issue, we
extended the formal model by allowing the possibility to bound to one the

2This does not consider the time needed to finalize the system design.
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CSM

DCM CDM CMD

DDD

Figure 30.7: Boeing 777 Lanes Modes
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Figure 30.8: Boeing 777 Channels Modes (w.r.t, Table 30.2)

number of component failures for each unrolling of the transition relation.
This extension maintains the set of reachable states, while it allows us to
reach a much better representation in terms of human understanding.

An interesting set of predicates for the PFC system is the one that
evaluates the operational mode of the channel lanes. In fact, each of the
three lanes can be set as Command (C), Standby (S), or Monitor (M), and
when one of them gets Disabled (D) the other two are assigned to C and
M mode. When an additional lane is disabled then the whole channel is
turned off, thus it gets into a DDD states. Figure 30.7 shows the result of
this analysis. If no failures are detected (e.g., the initial state), the state
of the system is CSM, which can either remain CSM or change into one
of the degraded modes. No modes with two disabled lanes are reachable,
therefore the failure of an additional lane will end to the DDD state.

After analyzing the lane modes at the channel level, we extracted the
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abstract state machine representing the channels mode evolution. The list
of expected configurations is reported in Table 30.2, where 3,2, and 0 repre-
sent respectively the lane modes CSM, DCM/CDM/CMD, and DDD. The
abstract model representing the channels modes is shown in Figure 30.8.
This result, as in the lanes case, shows a monotonic degradation of the
active lanes, and it matches the expected reachable configurations listed in
Table 30.2.

30.3.5 Fault Tree Analysis

The main aspect that has to be analyzed in a Primary Flight Computer
is its robustness in providing the correct command to the actuators. In
order to evaluate this aspect, we rely on the automated miter construction
and evaluate under which fault configurations the system under analysis
provides a wrong output. This analysis is performed on all possible initial
configurations of the system i.e., from 333 to 000. Table 30.4 lists the
results for this analysis, by showing the number of minimal cutsets for
the cardinalities 0, 1, 2, and 3, with the resulting probability. The bold
values express the number of fault configurations containing common cause
implementation failures. We remark that if the analysis returns TRUE
it means that the property does not hold even in the nominal case i.e.,
without triggering any faults. Clearly, this is the case when all channels
are disabled (configuration 000).

The results in Table 30.4 allow us to evaluate if the system meets the
functional availability requirements. In fact, [122] defines that the proba-
bility of providing a wrong output must be in the order of 10−10 when:

A. all lanes are operative; condition 333.

B. any single lane is inoperative in one, two, or all three channels; condi-
tions 332, 322, and 222.
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Initial Minimal Cutsets
Probability

Configuration 0 1 2 3
333 0 0 9 40 257 1309 1.00 ∗ 10−16

332 0 0 33 101 2503 4416 3.51 ∗ 10−16

322 0 0 183 128 99 7432 5.31 ∗ 10−16

222 0 3 0 128 8612 5.32 ∗ 10−16

330 0 3 15 300 2288 2751 3.00 ∗ 10−10

320 0 6 180 863 21 3442 6.01 ∗ 10−10

220 0 3 6 1163 1678 6.04 ∗ 10−10

300 0 31 93 145 3 160 7.02 ∗ 10−07

200 0 3 64 37 82 3.40 ∗ 10−06

000 TRUE 1.00

Table 30.4: Boeing 777 FBW: wrong output value (bold numbers are MCS with common
cause failures)

C. any one channel is inoperative; condition 330.

D. any one channel is inoperative, in combination with any single lane
inoperative in either one or both of the remaining channels; 320, and
220.

As shown in Table 30.4, the probability of obtaining a wrong output
is higher than 10−7 when only one channel is available (orange cells). In
all the other configurations the probabilities are in the order of 10−10 or
lower, proving that our formal interpretation of the PFC system satisfies
the availability requirements.
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The result of the reachability matrix analysis, reported in Table 30.5,
demonstrates that the majority of the fault trees are FALSE, representing
that the final configuration cannot be reached by that specific initial mode.
This result confirms the monotonic degradation of the PFC lanes e.g.,
once the configuration 222 is reached then only 222, 220, 200, or 000 will
be reachable. This result extends what is represented in Figure 30.8 by
adding probabilities to the transitions that link each pair of states.

Table 30.5 may erroneously recall a Markov Chain transition matrix,
however the semantics of the two are not directly comparable. In fact, in
case of a Markov Chain the value of the cell [333,332] would express the
probability of going from 333 to 332 in 1 step. Moreover, a Markov Chain
transition matrix requires that the sum of each row to be equal to 1, which
does not apply for Table 30.5 due to the fact that we are labeling with
probabilities only the fault events.
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30.4 Airbus A330 Flight Computers

This section shows an application of the techniques for the verification of
redundant system architectures introduced in Part IV. The case-study that
we take into account is the Primary Flight Computer (PFC) architecture
of the Airbus A330, described in [114, 10].

30.4.1 System Description

The architecture of the Fly-by-Wire system of the Airbus A330 follows
an extension of the Dual Modular Redundancy, which acts in an “hot-
standby” fashion. This type of architectural redundancy is characterized
by two sub-systems: primary and secondary. More specifically, the lat-
ter takes over on the computation when the primary is disabled, due to a
detected system malfunctioning. In the PFC of the A330, both primary
and secondary systems have the capability of interpreting the pilot’s objec-
tives, and translate them into actuators command. Airbus A330 primary
and secondary systems are respectively composed of three and two com-
puters. The architecture under analysis, shown in Figure 30.9, integrates
the computer systems with additional components managing the interac-
tion between them. In fact, only one computer at a time, called master,
will be active and computing the actuators command, while all the others
are supervising it by providing a feedback signal. The interpretation that
we applied centralizes this functionality into the Hub Feedback component,
which routes the feedback to the current active computer. Internally, both
primary and secondary computers have a switch component that connects
the command to the output of the current active computer. The Flight
Control Data Concentrators (FCDC) component operates as a switch at
the sub-systems level, with the difference that it is implemented with a
dual redundancy approach in order to avoid single point of failures.
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Figure 30.9: Airbus A330 FBW Architecture

Power System

Power system and PFC have a tight dependency, thus even the former
requires a design that assures fault tolerance and reliability.

The main source of power in a modern aircraft is represented by the en-
gines, and the Permanent Magnet Generators (PMG) are the components
that transform kinetic energy into electrical power. Some aircraft integrate
the engines PMGs with Auxiliary Power Units (APU). Those components,
based on an internal combustion engine, do not produce thrust but are
directed only to generate electrical power. In the case of an Airbus A330,
the system relies on a single PMG for each engine, and an APU installed
on the tail of the aircraft. In this setting, a single PMG or APU is sufficient
to supply the entire aircraft.

As described earlier in this Chapter, modern aircraft have no mechani-
cal backup and the loss of electrical power would result in a catastrophic
condition. In order to mitigate those event, the power system is integrated
with multiple batteries that provide enough power when no generators
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30.4. AIRBUS A330 FLIGHT COMPUTERS

Figure 30.10: Airbus A330 Power System

are available. Figure 30.10 shows the power system architecture imple-
mented in the Airbus A330, which is composed of 2 PMGs, 2 batteries,
an APU, and an additional emergency generator linked to the hydraulic
system. The power system supplies the PFC via 3 disjoint lanes: Normal
DC, Battery Hot, and Emergency DC. The power distribution, as depicted
in Figure 30.10, is designed in order to provide at most two sources for
each main computer and FCDC system.

Computers Implementation

The implementation of the Airbus A330 computers, other than the five
replicas, adds an additional level of redundancy. In fact, each computer
integrates two CPUs that elaborate the pilot’s objectives. Those compo-
nents differ from the fact that the first one computes the actuators com-
mands, and the second one monitors its activity by comparing the output
value with the result of a local computation. The monitoring activity is
fundamental in this architecture, because one single primary/secondary
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Figure 30.11: Airbus A330 Primary/Secondary Computer

computer will be active at the same time. Due to this fact, the Airbus
imposed there be four different cpu and software designs, supervised and
developed by four disjoint engineering teams. The implementation diver-
sity has been categorized into i) primary command, ii) primary monitor,
iii) secondary command, and iv) secondary monitor.

As described earlier in this section, each computer has to provide a
feedback to the current master computer, as well as manage the feedback
coming form the other ones i.e., in case of acting as a master. Figure 30.11
shows that these functionalities are in charge of two separate components
called respectively Feedback Provider and Feedback Manager. The latter’s
behavior is similar to a monitor component, in fact it compares the master’s
command with the local command, and the output feedback represents the
value of the equality between the input signals. The feedback manager
collects all input feedbacks into a single one, which is then provided to the
Mode Controller. This component is the one devoted to deciding whether
the command should transferred to the output or not, according with the
pass/fail signals coming from monitor and feedback manager components.
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Mode Primary Computers Secondary Computers Configuration
Normal 3/3 2/2 P3 S2
Normal-S1 3/3 1/2 P3 S1
Normal-S0 3/3 0/2 P3 S0
Normal-D 2/3 2/2 P2 S2
Normal-D-S1 2/3 1/2 P2 S1
Normal-D-S0 2/3 0/2 P2 S0
Alternate 1/3 2/2 P1 S2
Alternate-S1 1/3 2/1 P1 S1
Alternate-S0 1/3 2/0 P1 S0
Direct 0/3 2/2 P0 S2
Direct-D 0/3 1/2 P0 S1
Dead 0/3 0/2 P0 S0

Table 30.6: Airbus A330 FBW modes

System Reconfiguration

The PFC of the Airbus A330, as every redundant systems, has multiple
operational modes that are selected according to the level of system degra-
dation. Those levels are imposed by the failure occurrence, and follow a
predefined pattern when multiple choices are possible. Under normal con-
ditions i.e., when no failures are detected, the PFC selects a master out
of the three primary computers. The role of the master is to elaborate
the pilot’s objectives into actuators command. This turns out to have one
computer that performs the actual PFC activity, and 5 (one local to the
master computer, and 4 from the other primary/secondary computers) that
act as monitors. When a single feedback signal becomes FALSE, meaning
that a mismatch has been detected, the internal mode controller disables
the entire computer. This results into the promotion to master of one the
primary computers, if no primary one is available, then a secondary will be
selected. The remaining computers will act as feedback monitors. This re-
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Component
# Failures

Visible Hidden
Power System 6 0
Primary Computers 33 18
Secondary Computers 20 10
Common Cause Implementation 0 4
FCDC 2 2
Total 61 34

Table 30.7: Components Failures

configuration approach delivers a list of possible operational modes, which
are described in Table 30.6.

30.4.2 System Faults Definition

As listed in Table 30.7, the resulting formal model of the Airbus A330
PFC has a total of 95 possible faults, where each of them is assigned to a
probability of occurrence. In case of a visible failure, the probability is set
to 10−7 for one hour of operation, while for hidden failures the value is set
to 10−10. Those probabilities represent an “extremely improbable” and an
“extremely remote” event.

As for the design of the Boeing 777 PFC, the Airbus A330 differenti-
ates the design of the computational modules. In this case, command and
monitor computations are based on different designs, and the diversity is
applied also between primary and secondary computers. This approach
entails a total of four different implementation designs. In practice, Com-
mands and Monitors are softwares that compute the actuators commands
according with pilot’s objectives, thus their probability are set to 0.0 be-
cause they are not quantifiable. Even though the software implementation
events are not taking part in the probability computation, they will be still
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considered and analyzed in the minimal cutsets computation.

30.4.3 Formal Modeling and Model Validation

The architecture description of the Airbus A330 PFC is modeled by relying
on the techniques described in Chapter 20. In this case, we described the
system as a combinatorial model. More specifically, in absence of faults the
outputs of the PFC are a function of the current inputs, and not dependent
on the previous inputs or computed values. In fact, under this assumption
the whole PFC is equivalent to a single “ISM CLAWS” module. The
extension with failures adds a non deterministic behavior to the system,
however the PFC’s outputs remain dependent only on current inputs and
state variables.

The Airbus A330 PFC system modeling required a total amount of 20
man-hours3. The resulting OCRA model is composed of 586 lines of code,
that turned out to generate a miter construction in SMV language of 848
lines. The state machine generated has 341 state variables (113 real and
228 Boolean) where 95 of those are fault variables, and 10 uninterpreted
functions.

This analysis resulted in the definition of a set of 174 invariant proper-
ties.

30.4.4 Abstract Model Analysis

The Abstract Model Analysis of this system is performed on the model with
additional constraints that bound to one the number of component failures
for each enrolling of the transition relation. This extension allows us to
have an explicit representation of the transitions between each reachable
state.

3This does not consider the time needed to finalize the system design.
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MAA

MAD

MDA

DMA

DDD

MDD

DMD

DDM

(a) Primary Computers (b) Secondary Computers

Figure 30.12: Airbus A330 FBW reachable modes

The set of predicates chosen for the abstract model analysis extract
the operational modes of primary and secondary computers. Specifically,
each computer can operate in three different modes: Active/Available (A),
Disabled (D), or Master (M), but just one out of five computers can be in
master mode. Figure 30.12a shows how the primary computers operational
modes evolve. As expected, a master is selected when at least one computer
is active . This represents the actual behavior of the system, in fact a
secondary master should be chosen only when no primaries are available.
The result for the primary computers analysis is aligned with the secondary
ones, as shown in Figure 30.12b. In fact, the secondary computers allow
for not being selected as master when at least a primary one is available.
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The synchronous product of the two state machines in Figure 30.12
represents the operational modes of the entire system. The resulting ab-
stract state machine can be obtained from the analysis that expresses both
predicates i.e., for primary and secondary computers. The outcome of
this analysis is shown in Figure 30.13, and each state is associated to the
corresponding mode as in Table 30.7.

30.4.5 Fault Tree Analysis

The reliability evaluation of the PFC A330 is carried out by applying the
techniques described in Chapter 20. This allowed us to evaluate under
which condition the system provides a wrong result. This analysis is per-
formed on all possible initial configurations of the system i.e., from P3 S2 to
P0 S0. Table 30.8 lists the results for this analysis, by showing the number
of minimal cutsets for the cardinalities 0, 1, 2, and 3, with the computed
probability. The bold values express the number of fault configurations
containing common cause implementation failures. We remark that if the
analysis returns TRUE it means that the property does not hold even in
the nominal case i.e., without triggering any faults. Clearly, this is the case
when all computers are disabled (configuration P0 S0).

The result of this analysis shows a high level of system reliability for
the first 6 configurations in Table 30.8, in fact the resulting probability
of obtaining a wrong output is lower than 10−11. Notably, the (common
cause) implementation failures have lower impact on those configurations,
due to the fact that at least one of primary or secondary computer is
available.

The result of the reachability matrix analysis, reported in Table 30.9,
demonstrates that the majority of the fault trees are FALSE, representing
that the final configuration cannot be reached by that specific initial mode.
This result confirms the monotonic degradation of the PFC channels e.g.,
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Initial Minimal Cutsets
Probability

Configuration 0 1 2 3
P3 S2 0 0 7 3 356 26 2.00 ∗ 10−14

P2 S2 0 0 7 4 1133 51 2.00 ∗ 10−14

P3 S1 0 0 55 3 146 130 2.00 ∗ 10−14

P1 S2 0 0 75 5 348 4871 2.00 ∗ 10−14

P2 S1 0 0 55 4 923 9499 2.00 ∗ 10−14

P1 S1 0 0 123 821 138 287 2.68 ∗ 10−12

P3 S0 0 2 0 7 1512 2.00 ∗ 10−14

P0 S2 0 2 0 144 33 5.11 ∗ 10−13

P2 S0 0 2 0 397 22 1.22 ∗ 10−12

P0 S1 0 2 24 7 1 1.40 ∗ 10−6

P1 S0 0 2 34 3 1 1.90 ∗ 10−6

P0 S0 TRUE 1.00 ∗ 10+00

Table 30.8: Airbus A330 FBW: wrong output value

once the configuration P1 S1 is reached then only P0 S1, P1 S0, or P0 S0
will be reachable. This result shows a different perspective of the abstract
model analysis in Figure 30.13, where each cell with a positive probability
represents a transition in Figure 30.13b.
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30.5 Related Works

In [122, 96, 81, 110, 10, 114] the redundant Fly-by-Wire architectures of
Boeing 777 and Airbus A330 are described. However, none of them apply
formal analysis to the FBW systems.

[17] describes the technique applied to the development of the primary
flight computer of the Airbus A380. In particular, this paper shows how the
design space has been analyzed in order to select the best architecture out
of the 1059 possible ones. This work describes a branch and bound approach
that relies on a user defined architecture-to-cost mapping in order to prune
the search space.

The approach described in [88] solves the problem of components dis-
placement and assembly, in addition to an optimization check that excludes
the solutions that are not optimal.

30.6 Conclusion and Future Works

Modern aircraft reached a level of complexity and weight that pilots cannot
maneuver them just via pure mechanical systems. Therefore, current air-
craft rely on a Fly-by-Wire system that listens to pilot’s requests, translates
them into electrical signals, computes the actuators controls, and it finally
converts them into hydraulic force to move the flight surfaces. Nowadays,
the Fly-by-Wire system is the main system that drives the aircraft flight
surfaces, and very few modern aircraft rely on a mechanical backup. Given
these aspects, guaranteeing safety and reliability of Fly-by-Wire systems
is fundamental in aircraft design.

As with many safety critical systems, FBW systems rely on redundancy
in order to guarantee high levels of safety and reliability. The analyses
introduced in Part IV are tailored to aid the development of redundant

293
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architectures, thus they can be applied to support the development of
FBW system designs.

In this Chapter we have provided an extensive formal analysis of the
redundant flight computer of Boeing 777 and Airbus A330. The resulting
analysis have shown the practical capabilities of the techniques described
in Part IV, with the application of the SMT-based minimal cutsets com-
putation engine proposed in Chapter 8.

Future works will enrich the modeling with contracts [58], in order to
enable for the compositional verification, and compare with the contract-
based safety assessment techniques in Part III. Moreover, further analysis
will be directed to synthesize the best architecture according to a given
objective function.
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Formal Design and Safety Analysis
of AIR6110 Wheel Brake System

This Chapter reports an application of the contract-based safety analy-
sis approach on the Wheel Brake System case study described in the SAE
Aerospace Information Report 6110 [109] “Contiguous Aircraft/System De-
velopment Process Example”. This work is described in [36], and it applies
the techniques in Part III to a large scale system description by comparing
the result of the compositional approach to the monolithic one. In this
Chapter we provide an extract of the most relevant parts for this Thesis.

31.1 The Airspace Information Report 6110

The Society of Automotive Engineers (SAE) International is a United
States-based professional association for engineering professionals. Most
notably, SAE International contributes on the development of standards
for guiding design and development in automotive, aerospace, and com-
mercial vehicles fields.

The Aerospace Recommended Practice (ARP) 4754A [108] and
4761 [107] are documents developed by SAE that define process and
methodologies for assuring safety and reliability in avionic domain. The
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practices prescribed by these documents are recognized by the Federal
Aviation Administration (FAA) as acceptable means for showing compli-
ance with federal regulations [7, 8], and have been used by the industry
of the field for years. In 2011, SAE released the Aerospace Information
Report 6110 (AIR6110) document that, following the principles defined
in ARP4754A and ARP4761, describes the development of several sub-
systems of a hypothetical aircraft. The AIR6110 focuses on the Wheel
Brake System (WBS) of a passenger aircraft, capable of transporting be-
tween 300 and 350 passengers, and with an average flight duration of 5
hours. The WBS under analysis is a hydraulic brake system that provides
the primary stopping force during landing operations.

31.2 Overview of the WBS

31.2.1 WBS architecture and behavior

An overview of the Wheel Braking System architecture is shown in Fig-
ure 31.1. The WBS drives the braking force to 4 landing gears, two on the
left side and two on the right, and each landing gear is composed of two
wheels. The wheel braking system is composed of three sub systems: hy-
draulic, electric, and mechanic. The hydraulic system provides the source
of power that can be converted into braking force, and the electrical one
drives the braking operations. The mechanical system operates as backup
in case of electrical malfunctioning.
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The wheel braking system is a redundant system, and it can operate in
three different operational modes, according with the current sub-systems
availability. In absence of failures the system acts in normal mode, thus
the hydraulic power is provided independently to each wheel through the
green hydraulic system. A separate meter valve for each wheel controls the
hydraulic flow, and it is controlled by the Braking System Control Unit
(BSCU). The BSCU is able to apply independent brake force to each wheel,
and therefore to provide anti-skid protection by analyzing ground speed,
wheel speed, and brake commands. In case of malfunction of the green
hydraulic, the system switches to the alternate mode. In this operational
mode the hydraulic force is provided to each landing gear by the blue
system, and the switch from green to blue is operated by a selector valve.
The alternate mode does not allow for an independent control of each
wheel, but in unison with the wheel of the same landing gear. The blue
hydraulic system is composed of four anti-skid shutoff valves and four meter
valves. The anti-skid valves are controlled by the BSCU, which supervises
the flow to the meter valves in order to avoid wheel skid. The meter
valves operates directly on the wheels brake, and they are controlled by
the pilot’s left and right pedals. In case of failure of the blue pump, the
WBS guarantees an additional level of reliability. In fact, under these
circumstances an accumulator takes over by providing sufficient pressure
to brake the aircraft. Moreover, an isolation valve placed before the pump
prevents pressure from flowing back to the blue pump.

Sensors for the pedal position and the wheels’ angular speed are also
part of the system, though not represented in the diagram in Figure 31.1
for the sake of clarity.
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31.2.2 System Requirements

The AIR6110 document contains a set of safety requirements on the ex-
pected probability of an unwanted event occurrence e.g., “the loss of all
wheel braking shall be extremely remote”. The case study in [36] focuses
on the verification of five safety requirements:

S18-WBS-R-0321 Loss of all wheel braking (unannunciated or annunci-
ated) during landing or rejected take off shall be ex-
tremely remote

S18-WBS-R-0322 Asymmetrical loss of wheel braking coupled with loss of
rudder or nose wheel steering during landing or rejected
take off shall be extremely remote

S18-WBS-R-0323 Inadvertent wheel braking with all wheels locked during
takeoff roll before V1 shall be extremely remote

S18-WBS-R-0324 Inadvertent wheel braking of all wheels during takeoff
roll after V1 shall be extremely improbable

S18-WBS-R-0325 Undetected inadvertent wheel braking on one wheel w/o
locking during takeoff shall be extremely improbable In-
tuitively, a safety requirement associates the description
of an undesirable behaviour or condition (e.g. “inad-
vertent wheel braking”) with a lower bound on its like-
lihood, according to terminology (e.g. “extremely im-
probable”) defined in [9].

31.3 Formal Modeling

The system described in the [36] has been modeled considering to fol-
low a development process with architectural refinement. Therefore, the
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Figure 31.2: Formal Models

modeling considers five different revisions of the original architecture as
in Figure 31.2. The Arch1 considers only green hydraulic and the con-
trol unit, thus it does not satisfy the safety requirements. This motivated
the definition of Arch2, which extended with the additional blue hydraulic
circuit and a dual redundancy in the BSCU component. Further analysis
to identify less expensive and easier to maintain alternative to Arch2, but
answering to the same safety requirements, opened up for the definition
of Arch3. In fact, this architecture moves from two BSCUs to a single
dual-channeled BSCU. Moreover, Arch4 extends Arch3 in order to met a
safety requirement addressing mutual exclusion of the operating modes of
the WBS. Only the physical system is modified, by adding an input to
the selector valve corresponding to the validity of the control system and
moving the accumulator in front of the selector valve.

An additional architecture called Arch2bis (A′ in Figure 31.2) has been
modeled, and it is based on the control system architecture of Arch2 and
the physical system architecture of Arch4. The purpose is to show that it
is possible to detect the issue that motivated the change to Arch4 earlier
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Arch1 Arch2 Arch2bis Arch3 Arch4

Architecture
Decomposition

Total components types 22 29 29 30 30
Leaf components types 15 20 20 20 20
Total components instances 100 168 168 169 169
Leaf components instances 79 143 143 143 143
Max depth 5 5 5 6 6
Contracts 121 129 129 142 142

System
Implementation

Properties 199 291 291 304 304
Bool. Vars 31 79 79 79 79
Enum Vars 55 88 88 88 88

Extended
System

Implementation

Failure modes 28 33 33 33 33
Fault variables 170 261 261 261 261
Bool. Vars 74 156 156 156 156
Enum Vars 184 311 311 311 311

Table 31.1: Models Statistics

in the design process at Arch2.

All five architectures are described using the OCRA contract-based de-
sign, and follows the process described in Part V (without the redundant
architecture analysis). More specifically, each architecture is hierarchically
decomposed in sub-components defined with input and output ports. Each
component has a set of contracts that are refined by its sub-components
contracts, while the leaf components are refined with a state machine im-
plementation. This system decomposition, called nominal, is then verified
by relying on OCRA check refinement and check implementation.

The nominal model is then extended to represent the faulty behavior.
This phase is automatically performed on the contract decomposition, with
the contract-based safety assessment technique, and on the leave implemen-
tations with fault injection. The safety analysis is then performed with the
integration of OCRA and xSAP, able to provide a hierarchical fault tree
for each top level system contract.
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Property
MCS cardinality

1 2 3 4 5 > 5
S18-WBS-R-0321 0 6 627 629 T.O. T.O.
S18-WBS-R-0322-left 2 2 203 46287 T.O. T.O.
S18-WBS-R-0322-right 2 2 203 46287 T.O. T.O.
S18-WBS-R-0323 0 0 0 0 0 T.O.
S18-WBS-R-0324 0 1 0 2 8729 T.O.
S18-WBS-R-0325-wheel1..8 9 12 2596 0 0 0
cmd implies braking w1 13 30 7428 3815 1768 0
braking implies cmd w1 10 24 2647 4530 59 0

Table 31.2: Fault Tree Analysis results on Arch4 monolithical model

The compositional approach on a contract-based system can be also
integrated with a monolithical analysis. More specifically, it is possible to
combine all leaf implementing a single state machine. OCRA provides this
functionality, and it generates a single SMV file representing the whole
architecture. Standard validation and verification can be then applied on
the monolithical model, as well as fault tree analysis via minimal cutsets
computation. In [36] a comparison between monolithical and compositional
approaches has been analyzed. Statistical information on the resulting
models is reported in Table 31.1.

31.4 Safety Analysis

When the model under analysis reaches a significant size (e.g., ∼600 state
variables with ∼300 fault variables) the analysis of the minimal cutsets
becomes impractical. This limitation seems to has more impact on the
analysis of the results than on the computational power needed to extract
that information. Table 31.2 reports the results of the minimal cutsets
computation on Arch4, by applying the IC3-based techniques described
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in Part II. Considering the case of S18-WBS-R-0322 property, a manual
inspection of more than 46000 MCS is completely out of reach. However,
assuming that the lower the cardinality of a MCS is, the higher it is its
significance, this analysis become relevant when looking for single or double
point of failures in the system.

The monolithical fault tree analysis performs the evaluation without
any information on the system architecture under analysis. This results
in the impossibility to break the symmetry that characterizes almost all
redundant systems. For instance, we can consider a simple example when
a top level event can be reached when either of C1 and C2 components fail,
and where each C1, C2 is composed of two fundamental parts. In this case,
the monolithical analysis would provide the cutsets {{C1.pt1, C2.pt1},
{C1.pt1, C2.pt2}, {C1.pt2, C2.pt1}, {C1.pt2, C2.pt2}}. Extending this
example with 8 components, as in the WBS case study, the resulting MCS
would be exponentially bigger i.e., 256.

The contract-based safety analysis, differently from the monolithic ap-
proach, performs the fault tree analysis by inspecting the hierarchical de-
composition of the system. Thus, this approach is not affected by the
combinatorial explosion in the minimal cutsets extraction. Moreover,
the contract-based approach leverages on a compositional verification and
avoids unnecessary analysis of the duplicated parts.

Taking into account the results summarized in Table 31.2, the total num-
ber of MCS for the property S18-WBS-R-0325-wheel1 are ∼2600, which
turns out to generate a tree with ∼7800 leaves (i.e., (9 ∗ 1) + (12 ∗ 2) +
(2596∗3)). Figure 31.3 reports the fault tree obtained with contract-based
safety assessment on the same property. Figure 31.3b represents the full
fault tree, while Figure 31.3a shows a zoomed part represented by the red
square in 31.3b. The representation of the full fault tree hierarchically
organized is still quite big, however its size of ∼400 leaves is significantly
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lower than its monolithical counterpart. We remark that the fault tree in
Figure 31.3 is automatically generated out of the OCRA system decom-
position, and represented via OpenFTA tool [98]. The advantages of the
compositional approach over the monolithical one are not only relevant to
the quality of the produced artifact, but also on the computational time.
In fact, the complete monolithical fault tree analysis on Arch4 takes ∼1000
minutes to complete (without considering the time outs), while the com-
positional one requires only 1 minutes and 30 seconds. However, and as
discussed in Chapter III, the minimal cutsets computed on the hierarchical
decomposition can be an over-approximation of the one resulting from the
monolithic analysis. This outcome is directly dependent on the tightening
of the components (contract) refinement, and it is part of the standard
practice in safety analysis.
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(a) Extract of the Fault Tree (Red Square)

(b) Full Representation

Figure 31.3: Example of Resulting Fault Tree

31.5 Conclusion

This Chapter provides an overview of the results achieved in [36], by apply-
ing the techniques of contract-based safety assessment to an aircraft wheel
braking system.

The analysis of the WBS, which is a complex real-world case-study,
has demonstrated the significant improvement reached by the IC3 based
minimal cutsets computation introduced in Part II. This technique, inte-
grated with the contract-based safety analysis (Part III), allowed for an
automated and efficient generation of hierarchically organized fault trees.
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Thesis Conclusion

In this Thesis we propose a novel approach to the model-based safety as-
sessment. The techniques that we have introduced are able to overcome
the problems of scalability, structured fault tree generation, and integration
with reliability analysis that characterized previous approaches. The ap-
plication of our techniques to a set of real-world case studies demonstrated
its capability of supporting the analysis of safety critical systems.

The integration of standard safety analysis with contract-based design
enables for automatically generated multi-layered artifacts such as Fault
Trees. Moreover, it overcomes the previous limitations by providing a
seamless integration with the analysis of the nominal model, and natively
support model refinement. In fact, the application of this technique to
the Avionic Recommended Practice [108, 107], and Aerospace Information
Report [109] demonstrated its ability to be compliant with the current
prescribed standards.

The reliability analysis, specialized for redundant architectures, extends
the process outlined by the contract-based safety assessment. In fact, it
integrates the standard architecture refinement with a set of techniques
tailored to improve the reliability aspects of a redundant system. Fur-
thermore, its extension with predicate abstraction provides a performance
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improvement of two orders of magnitude, enabling the possibility to ana-
lyze architectures with hundreds of redundant components.

At the basis, the application of modern IC3-based symbolic verification
allowed us to reach significant improvements in the minimal cutsets com-
putation routines. The experimental evaluation comparing this technology
with the previous ones has shown a remarkable increase of case-studies
instances solved in the time limit. The minimal cutsets computation is the
formal analysis engine of all others model-based safety analysis, and this
improvement provided a performance gain in all applications.

The main target of this Thesis was to provide practical improvements
in the design process of safety critical systems. This goal can be only
achieved with a concrete tool support, whose implementation is guided by
the application to real world case studies. We have reached this target by
defining a symbolic model checking based platform, implemented into a set
of specialized tools such as nuXmv [97], xSAP [27], and OCRA [54]. The
results obtained in projects like the formal analysis of the next generation of
the air traffic control, and the aircraft directed wheel braking system have
demonstrated the significant capabilities of the proposed methodology.

For the future, we will extend the current approach in different direc-
tions. For the contract-based safety assessment, we will support the gener-
ation of FMEA tables, by reorganizing the results obtained by the mono-
tonic Fault Tree Analysis. Moreover, the fault injection at contract level
will be refined by expressing more detailed faulty behaviors. Regarding the
redundant architecture analysis, we intend to add an automated synthesis
of the most reliable architectures that do not exceed cost and weight con-
straints. More in general, we will investigate techniques able to optimize a
given function, while preserving the original behavior of the system. The
new algorithms for the minimal cutsets computation are currently able to
deal with very large problems, but this holds only when failure variables
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satisfy the monotonicity assumption. In fact, at the current stage there
is no efficient ways of performing parameter synthesis with such a huge
number of components failure. For the future, we will investigate alterna-
tive approaches able to guarantee a level of performance that allows us to
analyze real-world systems.

We conclude this journey with an extract of “The Avionics Handbook”,
which gives a promising perspective to the work described in this Thesis.

There are two major reliability factors to be addressed in the
design of ultrareliable avionics: hardware component failures and
design errors. Physical component failures can be handled by us-
ing redundancy and voting. Formal methods address the problem
of design errors.

– Sally C. Johnson and Ricky W. Butler. The Avionics Handbook.
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