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Abstract

Assuring safety and reliability is fundamental when developing a safety

critical system. Road, naval and avionic transportation; water and gas

distribution; nuclear, eolic, and photovoltaic energy production are only

some examples where it is mandatory to guarantee those properties. The

continuous increasing in the design complexity of safety critical system calls

for a never ending sought of new and more advanced analytical techniques.

In fact, they are required to assure that undesired consequences are highly

improbable.

In this Thesis we introduce a novel methodology able to raise the bar

in the area of automated safety and reliability analysis. The proposed ap-

proach integrates a series of techniques, based on symbolic model checking,

into the current development process of safety critical systems. Moreover,

our methodology and the resulting techniques are thereafter applied to a se-

ries of real-world case studies, developed in collaboration with authoritative

entities such as NASA and the Boeing Company.

Keywords

[Model-Based Safety Assessment, Symbolic Model Checking, Safety Assess-

ment, Reliability Analysis, Fault Tree Analysis, Contract-Based Design,

Minimal Cutsets]
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1

Introduction

If a machine is expected to be infallible,

it cannot also be intelligent.

– Alan Turing

It is the 1906, and Lee de Forest invents the vacuum tube and makes

way for the active electronics. 30 years later, this result had a huge impact

in WWII which pushed on this technology and initiated the electronic

revolution. Colossus, the world’s first programmable computer, was one

of the most important application of such technology, but in this Thesis

we refer to this period for a different reason: the emerging of safety and

reliability engineering.

Electronic researches during WWII contributed in the development of

technological applications such as radio, radar, and television. At the

same time, the vacuum tubes were also the main cause of equipment fail-

ure, in fact they required to be replaced five times more often then all

other equipments. This recurring issue required to investigate on the defi-

nition of specific analysis, able to attribute the cause of such unreliability

of the electrical components. In a general perspective, the term reliabil-

ity attributes to the system capability of behaving in accordance with its

prescribed functionality, in fact a failure of a vacuum tube in an electrical

1



1. INTRODUCTION

device can cause the entire system not to working property. Differently,

system safety is the property of not causing damage, risk, or injury. After

WWII, specific studies in this direction arose from the necessity to deal

with the increasing level of complexity in military aircraft and ballistic

missile systems.

Over the years, the vacuum tubes were replaced by transistors, and

their successive miniaturization has allowed for the increasing in system

capability and complexity. In parallel to this trend, safety and reliability

engineering have had to evolve by introducing new and more efficient ap-

proaches able to support the design, and avoid unintended behaviors, of

such complex systems. In the current era, the problem of assuring safety

and reliability affects the design of systems that are definitely more per-

vasive than the purely military ones. Most notably areas of application

for such disciplines are road, naval and avionic transportation; water and

gas distribution; and nuclear, eolic, and photovoltaic energy production.

Guaranteeing safety and reliability in these applications is mandatory, thus

they are categorized as safety critical systems. The process that guides the

development of a safety critical system is highly controlled and standard-

ized by the competent authorities. In fact, releasing a certificate of system

conformance requires to guarantee that system requirements, defined at

the early stages of the development, are fairly derived into the system and

sub-systems design, correctly implemented into the production phase, and -

finally - that the concrete system implementation is in accordance with sub-

systems, system, and the original requirements definition. Each of these

phases is characterized by a set of well established analysis and method-

ology, which guides the system design through an incremental refinement

from initial requirements definition to the final system implementation.

The resulting process has two parallel flows: one that analyzes the system

under normal conditions, and the other that evaluates its robustness in

2



presence of components’ failure. The former is the system development

V-Model, and the latter is called safety assessment.

Modern safety critical systems have become so complex that their safety

cannot be shown solely by test, and whose logic is nearly impossible to

comprehend without the aid of analytical tools. The approach that, in the

last decades, emerged to cope with such complexity is the use of formal

methods. In practice, a system behavior can be defined with a variety of

diagrams, textual descriptions, and operational procedures, but in all cases

they must be well defined and tailored to avoid ambiguous interpretations.

The application of formal methods solves this issue by providing a set of

mathematical based techniques that allow the engineer to discharge the

possibility of introducing design misinterpretations. Since the resulting

formal representation of the system has a unique interpretation, therefore

it can be interpreted by a software that allows for automated or semi-

automated analysis to discover design flaws, and to validate the result.

The introduction of model checking, in early 1980s, represented one of

the most important achievements in the field of formal methods. In fact,

this technique allows for exhaustively and automatically check whether a

formal system definition - the model - meets a set of formal requirements.

However, while highly promising, model checking required several years

to be effectively applied to a real-world scenario and be integrated into a

development process.

In the 1990s, the advances of the model-based techniques have received

significant interest in the community of safety and reliability engineering.

The ensemble of those disciplines is defined as model-based safety assess-

ment (MBSA). The objective of this research field is to support the analysis

prescribed by the safety assessment process, by relying on the definition

of a formal model of the system. In particular, original MBSA techniques

[68, 100, 13] were directed to provide a single formalism able to automa-

3
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tize the production of classical safety artifacts such as Fault Trees (FT)

and Fault Modes and Effects Analysis (FMEA) tables. However, those ap-

proaches were operating only at the safety assessment level, and the relation

with the nominal system analysis (i.e., the V-Model) was not considered.

The successive integration with model checking techniques allowed to

reduce this gap [29, 39, 38, 42, 11, 22, 21, 37]. However, the resulting

techniques were not directed to natively support the distinctive refinement

of the design that characterizes the development of a safety critical system.

At the same time, they experience significant issues when dealing with real-

world, large scale system designs.

Contributions

In this Thesis we define a set of comprehensive model-based safety assess-

ment methodologies and techniques able to overcome the limitations of

current approaches. The proposed solution provides i) a seamless integra-

tion with standard V-Model and safety assessment processes, ii) able to

natively follow the characteristic refinement of the system design, iii) by

providing advanced and completely automated techniques for assuring sys-

tem safety and reliability, iv) while guaranteeing the ability to deal with

real-world system designs.

This target has been reached by integrating several different techniques

into a single framework. The contributions of this Thesis that support

these results are the followings:

• In [30] we improve the performance of the minimal cutsets computa-

tion, which represents the basis of all model-based safety assessment

techniques that rely on symbolic model checking. This result has been

possible via the application of modern SAT-based algorithms. More-

over, we widen the level of expressivity supported by the minimal

4



cutsets computation, moving from pure invariant definition of system

specifications to a full support of Linear Temporal Logic (LTL) [102].

• In [35] we encompass an emerging paradigm called contract-based

design (CBD) in order to define a novel methodology that natively

supports the refinement of system design. In fact, CBD introduces a

formal approach to automatically analyze the correctness of system

decompositions into a hierarchy of sub-systems and modules.

• We extend current model-based safety assessment methodologies in

order to support the reliability analysis of redundant architectures

[33]. This approach integrates Satisfiability Modulo Theory (SMT)

and minimal cutsets computation in order to support the analysis in

the early stages of the system design e.g., when modules implemen-

tation have not yet defined. Moreover, in [34] we apply a specialized

technique based on model abstraction that significantly improves the

performance.

• We implemented all aforementioned techniques into a set of specialized

tools such as nuXmv [97], xSAP [27], and OCRA [54], which are en-

gineered in order to support a comprehensive framework that follows

the system design by supporting both V-model and safety assessment

processes.

• In order to validate the practical applicability of the methodologies in-

troduced in this Thesis, we applied them to a series of real-world case

studies. Most notably, the aforementioned approaches are applied

in a joint project with the National Aeronautics and Space Agency

(NASA) to formally analyze a series of possible designs for the next

generation of the Air Traffic Control system (ATC) [90, 69]. Fur-

thermore, an analysis of the reliability has been applied to the archi-
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tectural design of the Primary Flight Computers of the Boeing 777

and Airbus A330. Moreover, we discuss the effectiveness of the pro-

posed approach to produce safety analysis artifacts, by applying it to

a case-study described in the Aerospace Information Report [109];

• We provide the whole documentation regarding case studies and tools

at the link www.mattarei.eu/cristian/thesis.

Structure of the Thesis

The rest of this Thesis is organized as follows:

• Part I provides the background notions that identify the starting point

of this Thesis. This Part provides an overview of V-Model and safety

assessment processes, their integration with formal methods, and a

set of formal definitions characterizing the problem that we intend to

solve.

• Part II elaborates on the problem of minimal cutsets computation.

The first portion describes how to relate nominal design and its exten-

sion with failure behaviors. Previous techniques are then discussed, in

addition to a set of simple extensions that can be applied to solve this

problem. This Part continues with the introduction of novel tech-

niques that define the new state of the art in the minimal cutsets

computation. An extensive experimental evaluation is then described,

followed by the description of an LTL extension, and future directions.

• Part III describes the integration of safety analysis with contract-

based design. In this Part we follow the description of the technique

with a running example taken from an avionic standard. Subsequently,

we provide a detailed definition of contract-based design, which is then

extended into the contract-based safety analysis approach. This Part

6



concludes with an experimental evaluation and a discussion on future

directions.

• Part IV elaborates on the techniques for the reliability analysis of

redundant architectures. Firstly, it provides an overview of the tech-

niques used to increase hardware reliability by the application of com-

ponents redundancy. Afterwards, we provide the detail of the auto-

mated technique based on Satisfiability Modulo Theory, and its sub-

sequent improvement based on predicate abstraction. Experimental

evaluations and future directions conclude this Part.

• Part V is devoted at describing the tools architecture that we designed

in order to carry out the aforementioned techniques. This Part de-

scribes the evolution that have been applied on nuXmv, xSAP, and

OCRA tools in order to defined the model-based safety assessment

approach described in this Thesis. A discussion on the resulting com-

prehensive process is then provided.

• Part VI supports the effectiveness of the techniques that we have in-

troduced in this work, by providing the details of their application

to a set of real-world case studies. In this Part we first describe the

analysis of a triple modular generator, which is a small but repre-

sentative example to introduce the application of model-based safety

assessment. Afterwards, we provide the details of the evaluation of

the next generation of the air traffic control system, the analysis of

the Fly-by-Wire architectures of two modern aircraft, and an extract

of the results reached on the evaluation of an avionic based wheel

braking system.
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